OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 21 — Nov. 1, 2009
  • pp: 4678–4685

Stress-Induced Birefringence Characteristics of Polymer Optical Rib Waveguides

M. Faruque Hossain, Hau Ping Chan, Mohammad Afsar Uddin, and R. K. Y. Li

Journal of Lightwave Technology, Vol. 27, Issue 21, pp. 4678-4685 (2009)

View Full Text Article

Acrobat PDF (865 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We report the detailed numerical investigation of stress-induced material birefringence in polymer rib waveguide for the design of nonbirefringent waveguide devices. To accurately simulate the stress-induced effects we propose a more realistic model in the finite element analysis which considers the stresses induced over the entire sequential fabrication process. It is observed that the birefringence is nonuniform, and it is different for different etch depth and core width. The maximum birefringence in the core layer is observed near the lower cladding which decreases to zero toward the top surface. The influence of this material anisotropy on the modal birefringence is analyzed also for different rib structures. We found the stress effects on the modal birefringence to be largely affected by etch depth, while core width has small effect. It is also found that the deeply etched core has better birefringence stability. Finally, an accurate design of the zero-birefringence waveguide is illustrated by taking the stress effects into account, and the results are compared with experimental data. Excellent agreement between calculated and experimental results confirms the potential application of this work to aid in the design of polarization-insensitive waveguide devices.

© 2009 IEEE

M. Faruque Hossain, Hau Ping Chan, Mohammad Afsar Uddin, and R. K. Y. Li, "Stress-Induced Birefringence Characteristics of Polymer Optical Rib Waveguides," J. Lightwave Technol. 27, 4678-4685 (2009)

Sort:  Year  |  Journal  |  Reset


  1. L. Eldada, L. W. Shacklette, "Advances in polymer integeated optics," IEEE J. Sel. Topics Quantum Electron. 6, 54-68 (2000).
  2. H. Ma, A. K.-Y. Jen, L. R. Dalton, "Polymer-based optical waveguides: Materials, processing and devices," Adv. Mater. 14, 1339-1365 (2002).
  3. M. Zhou, "Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication," Opt. Eng. 41, 1631-1643 (2002).
  4. R. A. Steinberg, T. G. Giallorenzi, "Performance limitations imposed on optical waveguide switches and modulators by polarization," Appl. Opt. 15, 2440-2452 (1976).
  5. R. Noé, H. J. Rodler, A. Ebberg, G. Gaukel, B. Noll, J. Wittman, F. Auracher, "Comparison of polarization handling methods in coherent optical systems," J. Lightw. Technol. 9, 1353-1366 (1991).
  6. T. C. Chen, J. Kuo, W. L. Lee, C. C. Lee, "Influences of temperature and stress on transmission characteristics of multilayer thin-film narrow bandpass filters," Jpn. J. Appl. Phys. 40, 4087-4096 (2001).
  7. M. Huang, "Stress effects on the performance of optical waveguides," Int. J. Solids Struct. 40, 1615-1632 (2003).
  8. K. Wörhoff, B. J. Offrein, P. V. Lambeck, G. L. Bona, A. Driessen, "Birefringence compensation applying double-core waveguiding structures," IEEE Photon. Technol. Lett. 11, 206-208 (1999).
  9. K. S. Chiang, W. P. Wong, "Rib waveguides with degenerate polarized modes," Electron. Lett. 32, 1098-1099 (2003).
  10. W. P. Wong, K. S. Chiang, "Design of polarization-insensitive Bragg gratings in zero birefringence ridge waveguide," IEEE J. Quantum Electron. 37, 1138-1145 (2001).
  11. S. Y. Cheng, K. S. Chiang, H. P. Chan, "Birefringence characteristics of benzocyclobutene rib optical waveguides," Electron. Lett. 40, 372-374 (2004).
  12. S. Y. Cheng, K. S. Chiang, H. P. Chan, "Polarization-insensitive polymer waveguide Bragg gratings," Micro. Opt. Technol. Lett. 48, 334-338 (2006).
  13. X. Zhao, Y. Z. Xu, C. Li, "Birefringence control in optical planar waveguide," J. Lightw. Technol. 21, 2352-2357 (2003).
  14. M. Huang, "Thermal stresses in optical waveguides," Opt. Lett. 28, 2327-2329 (2003).
  15. W. N. Ye, D.-X. Xu, S. Janz, P. Cheben, M.-J. Picard, B. Lamontagne, N. G. Tarr, "Birefringence control using stress engineering in silicon-on-insulator (SOI) waveguides," J. Lightw. Technol. 23, 1308-1318 (2005).
  16. H. P. Schriemer, M. Cada, "Modal birefringence and power density distribution in strained buried-core square waveguides," IEEE J. Quantum Electron. 40, 1131-1139 (2001).
  17. K. Okamoto, T. Hosaka, T. Edahiro, "Stress analysis of optical fibers by a finite element method," IEEE J. Quantum Electron. QE-17, 2123-2129 (1981).
  18. H. P. Chan, C. K. Chow, A. K. Das, "A wide-angle X-junction polymeric thermooptic digital switch with low crosstalk," IEEE Photon. Technol. Lett. 15, 1210-1212 (2003).
  19. R. C. Dune, S. K. Sitaraman, "An integrated process modeling methodology and module for sequential multilayered substrate fabrication using a coupled cure-thermal-stress analysis approach," IEEE Trans. Electron. Packag. Manufact. 25, 326-334 (2002).
  20. MSC. MARC Users' Guide MSC. Software Corp.Santa AnnaCA (MSC. Software Corp., 2001).
  21. M. A. Uddin, H. P. Chan, C. K. Chow, Y. C. Chan, "Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide," J. Electron. Mater. 33, 224-228 (2004).
  22. K. C. Chan, M. Teo, Z. W. Zhong, "Characterization of low-k benzocyclobutene dielectric thin film," Microelectron. Int. 20, 11-22 (2003).
  23. K. Okamoto, Fundamentals of Optical Waveguides. (Academic, 2000).
  24. F. Ay, A. Kocabas, C. Kocabas, A. Aydinli, S. Agan, "Prism coupling technique investigation of elasto-optical properties of thin polymer films," J. Appl. Phys. 96, 7147-7153 (2004).
  25. S. V. Burke, "Planar waveguide analysis by the spectral index method: II. Multiple layers optical gain and loss," Opt. Quantum Electron. 26, 63-77 (1994).
  26. P. C. Kendall, M. S. Stern, P. V. Robson, "Discrete spectral index method for rib waveguide analysis," Opt. Quantum Electron. 22, 555-560 (1990).
  27. K. S. Chiang, "Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides," Opt. Quantum Electron. 26, S113-S134 (1994).
  28. J.-H. Zhao, W.-J. Qi, P. S. Ho, "Thermomechanical property of diffusion barrier layer and its effect on stress characteristics of copper submicron interconnect structures," Microelectron. Reliab. 42, 27-34 (2002).
  29. Benzocyclobutene (BCB) thermal and mechanical properties http://www.dow.com/cyclotene/solution/thermprop.htm.
  30. S. Guo, I. Lundström, H. Arwin, "Temperature sensitivity and thermal expansion coefficient of benzocyclobutene thin films studied with ellipsometry," Appl. Phys. Lett. 68, 1910-1912 (1996).
  31. K. Fischer, J. Muller, R. Hoffman, F. Wasse, D. Salle, "Elastooptical properties of SiON layers in an integrated optical interferometer used as a pressure sensor," J. Lightw. Technol. 12, 163-169 (1994).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited