OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 21 — Nov. 1, 2009
  • pp: 4697–4702

Monolithically Integrated Photodetector Array With a Multistep Cavity for Multiwavelength Receiving Applications

Xiaofeng Duan, Yongqing Huang, Hui Huang, Xiaomin Ren, Qi Wang, Yufeng Shang, Xian Ye, and Shiwei Cai

Journal of Lightwave Technology, Vol. 27, Issue 21, pp. 4697-4702 (2009)

View Full Text Article

Acrobat PDF (1029 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A monolithically integrated photodetector array used for multiwavelength receiving was realized by growth of an ${\hbox {InP}}-{\hbox {In}}_{0.53}{\hbox {Ga}}_{0.47}{\hbox {As}}-{\hbox {InP}}$ p-i-n structure on a GaAs/AlGaAs Fabry-Pérot filter. The filter with a multistep cavity was fabricated by wet etching and regrowth. Each photodetector in the array detects a different wavelength, so the array functions as a multiwavelength receiver. The high-quality GaAs/InP heteroepitaxy was realized by employing a thin low temperature buffer layer. The photodetector array detects four wavelength channels, whose interval is about 10 nm, around 1550 nm. A full-width half-maximum less than 0.5 nm, a peak quantum efficiency over 15%, and a 3-dB bandwidth of 9 GHz were simultaneously obtained in the photodetector array.

© 2009 IEEE

Xiaofeng Duan, Yongqing Huang, Hui Huang, Xiaomin Ren, Qi Wang, Yufeng Shang, Xian Ye, and Shiwei Cai, "Monolithically Integrated Photodetector Array With a Multistep Cavity for Multiwavelength Receiving Applications," J. Lightwave Technol. 27, 4697-4702 (2009)

Sort:  Year  |  Journal  |  Reset


  1. K. Okamoto, K. Takiguchi, Y. Ohmori, "16-channel optical add-drop multiplexer using silica based arrayed-waveguide gratings," Electron. Lett. 31, 723-724 (1995).
  2. Q. Huang, F. Luo, Z. Wang, M. Xia, J. Hu, J. Yuan, G. Shen, "Parallel-stage-based reconfigurable optical add-drop multiplexer for WDM optical transport networks," IEEE Photon. Technol. Lett. 18, 1864-1866 (2006).
  3. C. R. Giles, B. Barber, V. Aksyuk, B. Barber, V. Aksyuk, R. Ruel, L. Stulz, D. Bishop, "Reconfigurable 16-channel WDM DROP module using silicon MEMS optical switches," IEEE Photon. Technol. Lett. 11, 63-65 (1999).
  4. B. Pezeshki, F. K. Tong, J. A. Kash, D. W. Kisker, R. M. Potemski, "Tapered Fabry-Pérot waveguide optical demultiplexer," IEEE Photon. Technol. Lett. 5, 1082-1085 (1993).
  5. B. Pezeshki, F. F. Tong, J. A. Kash, D. W. Kisker, "Vertical cavity devices as wavelength selective waveguides," IEEE J. Lightw. Technol. 12, 1791-1801 (1994).
  6. M. Gerken, D. A. B. Miller, "Multilayer thin-film structures with high spatial dispersion," Appl. Opt. 42, 1330-1345 (2003).
  7. M. Gerken, D. A. B. Miller, "Multilayer thin-film stacks with steplike spatial beam shifting," IEEE J. Lightw. Technol. 22, 338-342 (2004).
  8. C. G. M. Vreeburg, T. Uitterdijk, Y. S. Oei, M. K. Smit, F. H. Groen, E. G. Metaal, P. Demeester, H. J. Frankena, "First InP-based reconfigurable integrated add-drop multiplexer," IEEE Photon. Technol. Lett. 9, 188-190 (1997).
  9. K. T. Shiu, S. S. Agashe, S. R. Forrest, "An InP-based monolithically integrated reconfigurable optical add-drop multiplexer," IEEE Photon. Technol. Lett. 19, 1445-1447 (2007).
  10. S. S. Murtaza, K. A. Anselm, A. Srinivasan, B. G. Streetman, J. C. Campbell, J. C. Beam, L. Peticolas, "High-reflectivity Bragg mirrors for optoelectronic application," IEEE J. Quant. Electron. 31, 1819-1825 (1995).
  11. H. Bourdoucen, J. A. Jervase, "Design of ultra-fast dual-wavelength resonant-cavity-enhanced Schottky photodetectors," IEEE J. Quant. Electron. 37, 63-68 (2001).
  12. M. S. Ünlü, K. Kishino, J. I. Chyi, J. Reed, L. Arsenault, H. Morkoc, "Wavelength demultiplexing heterojunction phototransistor," Electron. Lett. 26, 1857-1858 (1990).
  13. A. G. Dentai, R. Kuchibhotla, J. C. Campbell, C. Tsai, C. Lei, "High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode," Electron. Lett. 27, 2125-2127 (1991).
  14. A. Dodabalapur, T. Y. Chang, "Resonant-cavity InGaAlAs/InGaAs/InAlAs phototransistors with high gain for 1.3–1.6 $\mu{\hbox {m}}$," Appl. Phys. Lett. 60, 929-931 (1992).
  15. M. J. Mondry, D. I. Babit, J. E. Bowers, L. A. Coldren, "Refractive indexes of (Al, Ga, In)As epilayers on InP for optoelectronic applications," IEEE Photon. Technol. Lett. 4, 627-630 (1992).
  16. H. Huang, Y. Huang, X. Wang, Q. Wang, X. Ren, "Long wavelength resonant cavity photodetector based on InP/air-gap Bragg reflectors," IEEE Photon. Technol. Lett. 16, 245-247 (2004).
  17. W. Wang, X. Ren, H. Huang, X. Wang, H. Cui, A. Miao, Y. Li, Y. Huang, "Tunable photodetector based on GaAs/InP wafer bonding," IEEE Electron Device Lett. 27, 827-829 (2006).
  18. W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, C. J. Chang-Hasnain, "High-performance 1.6 $\mu{\hbox {m}}$ single-epitaxy top-emitting VCSEL," Electron. Lett. 36, 1121-1123 (2000).
  19. J. Lv, H. Huang, X. Ren, A. Miao, Y. Li, H. Song, Q. Wang, Y. Huang, S. Cai, "Monolithically integrated long-wavelength tunable photodetector," IEEE J. Lightw. Technol. 26, 338-342 (2008).
  20. A. Beling, J. C. Campbell, "InP-based high-speed photodetectors," IEEE J. Lightw. Technol. 27, 343-355 (2009).
  21. M. S. Ünlü, S. Strite, "Resonant cavity enhanced photonic devices," Appl. Phys. 78, 607-639 (1995).
  22. K. Kato, "Ultrawide-band/high-frequency photodetectors," IEEE Trans. Microw. Theory Tech. 47, 1265-1281 (1999).
  23. W. A. Wohlmuth, J. W. Seo, P. Fay, C. Caneau, I. Adesida, "A high speed ITO-InAlAs-InGaAs Schottky-barrier photodetector," IEEE Photon. Technol. Lett. 9, 1388-1390 (1997).
  24. J. H. Jang, G. Cueva, D. C. Dumka, W. E. Hoke, P. J. Lemonias, "Long-wavelength ${\hbox {In}}_{0.53}{\hbox {Ga}}_{0.47}{\hbox {As}}$ metamorphic p-i-n photodiodes on GaAs substrates," IEEE Photon. Technol. Lett. 13, 151-153 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited