OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 21 — Nov. 1, 2009
  • pp: 4773–4780

Mitigation of Signal Distortions Using Reference Signal Distribution With Colorless Remote Antenna Units for Radio-Over-Fiber Applications

C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi

Journal of Lightwave Technology, Vol. 27, Issue 21, pp. 4773-4780 (2009)


View Full Text Article

Acrobat PDF (1601 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we propose and demonstrate a bidirectional radio-over-fiber (ROF) system using a reference signal distribution. In order to minimize the radio-frequency (RF) signal attenuation as well as limit the transmit power to moderate levels, small cell size, or picocell is used in the ROF system. This will result in the need of many base stations (BSs) to provide sufficient network coverage. Because of this, colorless remote antenna unit (RAU) with optical carrier generated and distributed from the head end (HE) is employed. Experimental results show that error-free signal transmission and remodulation using downstream differential phase shift keying (DPSK) and upstream on-off keying (OOK) is achieved in a 20-km reach ROF system. Experimental characterization of the reflective semiconductor optical amplifier (RSOA)-based remodulation unit is also performed. Numerical simulation is performed to compare the proposed scheme with several conventional optical millimeter-wave (mm-wave) schemes, including double sideband (DSB), optical carrier suppression (OCS), and single sideband (SSB). Results show that the proposed scheme could be a potential candidate to mitigate signal distortions due to signal fading and code time shifting.

© 2009 IEEE

Citation
C. W. Chow, L. Xu, C. H. Yeh, C. H. Wang, F. Y. Shih, H. K. Tsang, C. L. Pan, and S. Chi, "Mitigation of Signal Distortions Using Reference Signal Distribution With Colorless Remote Antenna Units for Radio-Over-Fiber Applications," J. Lightwave Technol. 27, 4773-4780 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-21-4773


Sort:  Year  |  Journal  |  Reset

References

  1. T. Kamisaka, T. Kuri, K. Kitayama, "Simultaneous modulation and fiber-optic transmission of 10 Gb/s baseband and 60 GHz band radio signals on a single wavelength," IEEE Trans. Microw. Theory Tech. 49, 2013-2017 (2001).
  2. K. Ikeda, T. Kuri, K. Kitayama, "Simultaneous three band modulation and fiber-optic transmission of 2.5 Gb/s baseband, microwave, and 60 GHz band signals on a single wavelength," J. Lightw. Technol. 21, 3194-3202 (2003).
  3. A. Martinez, V. Polo, J. Marti, "Simultaneous baseband and RF optical modulation scheme for feeding wireless and wireline heterogeneous access network," IEEE Trans. Microw. Theory Tech. 49, 2018-2024 (2001).
  4. G. K. Chang, J. Yu, Z. Jia, J. Yu, "Novel optical-wireless access network architecture for simultaneously providing broadband wireless and wired services," Proc. Opt. Fiber Commun. (2006).
  5. C. T. Lin, W. R. Peng, P. C. Peng, J. Chen, C. F. Peng, B. S. Chiou, S. Chi, "Simultaneous generation of baseband and radio signals using only one single electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Letts. 18, 2481-2483 (2006).
  6. C. T. Lin, J. Chen, P. C. Peng, C. F. Peng, W. R. Peng, B. S. Chiou, S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Letts. 19, 610-612 (2007).
  7. D. B. Payne, R. P. Davey, "The future of fibre access systems?," BT Technol. J. 20, 104-114 (2002).
  8. G. Talli, P. D. Townsend, "Hybrid DWDM-TDM long reach PON for next generation optical access," J. Lightw. Technol. 24, 2827-2834 (2006).
  9. S. B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, Y. J. Oh, "Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers," IEEE Photon. Technol. Letts. 19, 248-250 (2007).
  10. F. Payoux, P. Chanclou, M. Moignard, R. Brenot, "Gigabit optical access using WDM PON based on spectrum slicing and reflective SOA," Proc. Eur. Conf. Opt. Commun. (2005).
  11. K. L. Lee, E. Wong, "Directly-modulated self-seeding reflective SOAs in WDM-PONs: Performance dependence on seeding power and modulation effect," Proc. Eur. Conf. Opt. Commun. (2006).
  12. L. Y. Chan, C. K. Chan, D. T. K. Tong, F. Tong, L. K. Chen, "Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulaotr for WDM access networks," Electron. Letts. 38, 43-45 (2002).
  13. W. Hung, C. K. Chan, L. K. Chen, F. Tong, "An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data using injection-locked FP laser," IEEE Photon. Technol. Letts. 15, 1476-1478 (2003).
  14. J. J. Vegas Olmos, T. Kuri, K.-I. Kitayama, "Dynamic reconfigurable WDM 60 GHz millimeter-wave-band radio-over-fiber access network: Architectural considerations and experiment," J. Lightw. Technol. 25, 3374-3380 (2007).
  15. M. Huchard, M. Weiss, A. Pizzinat, S. Meyer, P. Guignard, B. Charbonnier, "Ultra-broadband wireless home network based on 60-GHz WPAN cells interconnected via RoF," J. Lightw. Technol. 26, 2364-2372 (2008).
  16. J. Kim, Y.-D. Chung, K.-S. Choi, D.-S. Shin, J.-S. Sim, H.-K. Yu, "60-GHz system-on-packaging transmitter for radio-over-fiber applications," J. Lightw. Technol. 26, 2379-2387 (2008).
  17. M. Weiß, M. Huchard, A. Stöhr, B. Charbonnier, S. Fedderwitz, D. S. Jäger, "60-GHz photonic millimeter-wave link for short- to medium-range wireless transmission up to 12.5 Gb/s," J. Lightw. Technol. 26, 2424-2429 (2008).
  18. J. J. V. Olmos, T. Kuri, K.-I. Kitayama, "Dynamic reconfigurable WDM 60 GHz millimeter-wave-band radio-over-fiber access network: architectural considerations and experiment," J. Lightw. Technol. 25, 3374-3380 (2007).
  19. J. J. V. Olmos, T. Kuri, T. Sono, K. Tamura, H. Toda, K.-I. Kitayama, "Reconfigurable 2.5-Gb/s baseband and 60-GHz (155-Mb/s) millimeter-waveband radio-over-fiber (interleaving) access network," J. Lightw. Technol. 26, 2506-2512 (2008).
  20. A. Hirata, H. Takahashi, R. Yamaguchi, T. Kosugi, K. Murata, T. Nagatsuma, N. Kukutsu, Y. Kado, "Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies," J. Lightw. Technol. 26, 2338-2344 (2008).
  21. M. Sauer, A. Kobyakov, J. George, "Radio over fiber for picocellular network architectures," J. Lightw. Technol. 25, 3301-3320 (2007).
  22. K.-I. Kitayama, A. Stöhr, T. Kuri, R. Heinzelmann, D. Jäger, Y. Takahashi, "An approach to single optical component antenna base stations for broadband millimeter-wave fiber-radio access systems," IEEE Trans. Microw. Theory. Tech. 48, 2588-2595 (2000).
  23. J. Yu, Z. Jia, T. Wang, G. K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007).
  24. N. J. Gomes, A. Nkansah, D. Wake, "Radio-over-MMF techniques—Part I: RF to microwave frequency systems," J. Lightw. Technol. 26, 2388-2395 (2008).
  25. A. M. J. Koonen, M. G. Larrodé, "Radio-over-MMF techniques—Part II: Microwave to millimeter-wave systems," J. Lightw. Technol. 26, 2396-2408 (2008).
  26. Z. Jia, J. Yu, G. Ellinas, G. K. Chang, "Key enabling technologies for optical-wireless networks: Optical millimeter-wave generation, wavelength reuse, and architecture," J. Lightw. Technol. 25, 3452-3471 (2007).
  27. M.-F. Huang, J. Yu, Z. Jia, G.-K. Chang, "Simultaneous generation of centralized lightwaves and double/single sideband optical millimeter-wave requiring only low-frequency local oscillator signals for radio-over-fiber systems," J. Lightw. Technol. 26, 2653-2662 (2008).
  28. J. Yu, M. F. Huang, Z. Jia, T. Wang, G. K. Chang, "A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal," IEEE Photon. Technol. Lett. 20, 478-480 (2008).
  29. J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, L. Chen, "Fiber dispersion influence on transmission of the optical millimeter-wave generated using LN-MZM intensity modulation," J. Lightw. Technol. 25, 3244-3256 (2007).
  30. C.-T. Lin, Y.-M. Lin, J. Chen, S.-P. Dai, P. T. Shih, P.-C. Peng, S. Chi, "Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression," Opt. Express 16, 6056-6063 (2008).
  31. K. Y. Cho, Y. Takushima, Y. C. Chung, "10-Gb/s operation of RSOA for WDM PON," IEEE Photon. Technol. Lett. 20, 1533-1535 (2008).
  32. L. Chen, Y. Shao, X. Lei, H. Wen, S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Letts. 19, 387-389 (2007).
  33. J. Yu, M. F. Huang, D. Qian, L. Chen, G. K. Chang, "Centralized lightwave WDM-PON employing 16-QAM intensity modulated OFDM downstream and OOK modulated upstream signals," IEEE Photon. Technol. Lett. 20, 1545-1547 (2008).
  34. C. W. Chow, "Wavelength remodulation using DPSK down-and-upstream with high extinction ratio for 10-Gb/s DWDM-passive optical networks," IEEE Photon. Technol. Lett. 20, 12-14 (2008).
  35. C. H. Yeh, C. W. Chow, F. Y. Shih, C. H. Wang, Y. F. Wu, S. Chi, "Tunable dual-wavelength fiber laser using optical-injection Fabry-Perot laser," IEEE Photon. Technol. Lett. 20, 2093-2095 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited