OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 21 — Nov. 1, 2009
  • pp: 4870–4877

Canonic Design of Parallel Cascades of Symmetric Two-Port Microring Networks

Vien Van

Journal of Lightwave Technology, Vol. 27, Issue 21, pp. 4870-4877 (2009)


View Full Text Article

Acrobat PDF (574 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A method for obtaining the optimal canonic design of optical filters based on parallel-cascaded arrays of symmetric two-port microring networks is presented. The approach is based on the all-pass decomposition of the parallel-cascaded microring architecture, whereby the filter is transformed into an equivalent sum-difference all-pass microring circuit via a similarity transformation of the transfer matrix. The sum-difference transformation also helps reveal important properties of the parallel-cascaded microring architecture, such as the doubly complementary nature of its transfer functions, and the existence and uniqueness of the canonic form of parallel-cascaded arrays of symmetric microring networks.

© 2009 IEEE

Citation
Vien Van, "Canonic Design of Parallel Cascades of Symmetric Two-Port Microring Networks," J. Lightwave Technol. 27, 4870-4877 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-21-4870

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited