OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 22 — Nov. 15, 2009
  • pp: 4943–4953

Interferometric Crosstalk Reduction in an RSOA-Based WDM Passive Optical Network

Patryk J. Urban, A. M. J. Koonen, G. Djan Khoe, and Huug de Waardt

Journal of Lightwave Technology, Vol. 27, Issue 22, pp. 4943-4953 (2009)

View Full Text Article

Acrobat PDF (1443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Reflection and Rayleigh backscattering-induced interferometric crosstalk in a link employing a reflective semiconductor optical amplifier (RSOA) may cause significant power penalty and, thus, limit the performance of the system. In this paper, we investigate interferometric crosstalk suppression in a centralized light generation wavelength division multiplexing-passive optical network (WDM-PON) by single-tone phase modulation either by utilizing the nonlinear behavior of the RSOA at the optical network unit (ONU) or by applying an external phase modulator at the source side. 6- and 7-dB reduction in power penalty for reflection-induced crosstalk is achieved, respectively. For Rayleigh backscattering-induced crosstalk power penalty is improved with 3 and 4.5 dB, respectively. The results show that an RSOA is very sensitive to reflections and backscattering and the tolerance to these impairments can be significantly improved by appropriate phase modulation. A comparison with advantages and disadvantages of both methods together with final recommendation is also given in the paper.

© 2009 IEEE

Patryk J. Urban, A. M. J. Koonen, G. Djan Khoe, and Huug de Waardt, "Interferometric Crosstalk Reduction in an RSOA-Based WDM Passive Optical Network," J. Lightwave Technol. 27, 4943-4953 (2009)

Sort:  Year  |  Journal  |  Reset


  1. E. Iannone, "Passive optical networks must evolve to survive," Fibre Syst. Eur. 26-27 (2008).
  2. A. M. J. Koonen, "Fiber to the home/fiber to the premises: What, where, and when?," Proc. IEEE 94, 911-934 (2006).
  3. Y. Xiao, X. Du, J. Zhang, F. Hu, S. Guizani, "Internet protocol television (IPTV): The killer application for the next-generation internet," IEEE Commun. Mag. 45, 126-134 (2007).
  4. "Operators take on the FTTH challenge," Fibre Syst. Eur. 21-24 (2008).
  5. P. J. Urban, B. Huiszoon, R. Roy, M. M. de Laat, F. M. Huijskens, E. J. Klein, G. D. Khoe, A. M. J. Koonen, H. de Waardt, "High bit rate dynamically reconfigurable WDM/TDM access network," IEEE/OSA J. Opt. Commun. Netw. 1, A143-A159 (2009).
  6. F.-T. An, K. S. Kim, D. Gutierrez, S. Yam, E. Hu, K. Schrikhande, L. G. Kazovsky, "SUCCESS: A next generation hybrid WDM/TDM optical access network architecture," J. Lightw. Technol. 22, 2557-2569 (2004).
  7. A. R. Dhaini, C. M. Assi, M. Maier, A. Shami, "Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks," J. Lightw. Technol. 25, 277-286 (2007).
  8. J. Prat, E. B. Pere, M. G. Joan, D. Oscar, Fiber-to-the-Home Technologies (Kluwer, 2002).
  9. E. Wong, "Directly modulated self-seeding reflective semicondctor optical amplifiers as colorless transmitters for wavelength division multiplexed passive optical networks," J. Lightw. Technol. 25, 67-74 (2007).
  10. E. J. Klein, P. J. Urban, G. Sengo, L. T. H. Hilderink, M. Hoekman, R. Pellens, P. van Dijk, A. Driessen, "Densely integrated microring resonator based photonic devices for use in access networks," Opt. Exp. 15, 10 346-10 355 (2007).
  11. L. Xu, X. J. M. Leijtens, M. J. H. Sander-Jochem, T. de Vries, Y. S. Oei, P. J. van Veldhoven, R. N. K. Smit, "InP based polarization insensitive tunable duplexer and integrated reflective transceiver," Proc. ECIO pp. 1-4.
  12. T. Kamalakis, T. S. Sagriotis, "Accurate estimation of the error probability in the presence of in-band crosstalk noise in WDM networks," J. Lightw. Technol. 21, 2172-2181 (2003).
  13. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, B. Mukherjee, "Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review [Invited]," OSA J. Opt. Netw. 4, 737-758 (2005).
  14. Y. Shen, K. Lu, W. Gu, "Coherent and icoherent crosstalk in WDM optical networks," J. Lightw. Technol. 17, 759-764 (1999).
  15. P. J. Legg, M. Tur, I. Andonovic, "Solution paths to limit interference noise induced performance degradation in ASK/direct detection lightwave networks," J. Lightw. Technol. 14, 1943-1954 (1996).
  16. R. Khosravani, M. I. Hayee, B. H. E. Willner, "Reduction of Coherent Crosstalk in WDM Add/Drop Multiplexing Nodes by Bit Pattern Misalignment," IEEE Photon. Technol. Lett. 11, 134-136 (1999).
  17. P. J. Urban, A. M. J. Koonen, G. D. Khoe, H. de Waardt, "Coherent crosstalk-suppression in WDM access networks employing reflective semiconductor optical amplifiers," Proc. IEEE ECOC pp. 91-92.
  18. P. J. Urban, A. M. J. Koonen, G. D. Khoe, H. de Waardt, "Mitigation of reflection-induced crosstalk in a WDM access network," OFC OThT3.
  19. P. J. Urban, A. M. J. Koonen, G. D. Khoe, H. de Waardt, "Rayleigh backscattering-suppression in a WDM access network employing a reflective semiconductor optical amplifier," Proc. IEEE/LEOS Benelux Symp. pp. 147-150.
  20. H. Kim, H. C. Li, C. H. Kim, "Effects of intraband crosstalk on incoherent light using SOA-based noise sppression technique," IEEE Photon. Technol. Lett. 18, 1542-1544 (2006).
  21. M. Fujiwara, J.-I. Khani, H. Suzuki, K. Iwatsuki, "Impact of backreflection on upstream transmission in WDM single-fiber loopback access networks," J. Lightw. Technol. 24, 740-746 (2006).
  22. H. W. Hu, H. Anis, "Degradation of bi-directional single fiber transmission in WDM-PON due to beat noise," J. Lightw. Technol. 26, 870-881 (2008).
  23. Y. J. Lee, Y. Cho, A. Murakami, A. Agata, Y. Takushima, Y. C. Chung, "Reflection Tolerance of RSOA-based WDM PON," Proc. OECC/IOOC pp. 102-103.
  24. G. P. Agrawal, N. A. Olson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quant. Electron. 25, 2297-2306 (1989).
  25. A. Yariv, H. Blauvelt, D. Huff, H. Zarem, "An experimental and theoretical study of the suppression of interferometric noise and distortion in AM optical links by phase dither," J. Lightw. Technol. 15, 437-443 (1997).
  26. M. Sharma, H. Ibe, T. Ozeki, "WDM ring network using a centralized multiwavelength light source and add-drop multiplexing filters," J. Lightw. Technol. 15, 917-929 (1997).
  27. K. Inoue, "Suppression of influence of homowavelength crosstalk in an optical add/drop multiplexing system by modulating LD light frequency," IEEE Photon. Technol. Lett. 11, 1177-1179 (1999).
  28. E. Tangdiongga, I. T. Monroy, R. Jonker, H. de Waardt, "Experimental evaluation of optical crosstalk mitigation using phase scrambling," IEEE Photon. Technol. Lett. 12, 567-569 (2000).
  29. W.-S. Jang, H.-C. Kwon, S.-K. Han, "Sppression of Rayleigh backscattering in a bidirectional WDM optical link using clipped direct modulation," IEE Proc.-Optoelectron. 151, 219-222 (2004).
  30. P. J. Urban, E. J. Klein, L. Xu, E. G. C. Pluk, A. M. J. Koonen, G. D. Khoe, H. de Waardt, "1.25–10 Gbit/s reconfigurable access network architecture," ICTON paper Th.B1.6.
  31. P. J. Urban, E. G. C. Pluk, M. M. de Laat, F. M. Huijskens, G. D. Khoe, A. M. J. Koonen, H. de Waardt, "1.25-Gb/s transmission over an access network link with tunable OADM and a reflective SOA," IEEE Photon. Technol. Lett. 21, 380-382 (2009).
  32. L. Occhi, L. Schares, G. Guekos, "Phase modeling based on the alpha-factor in bulk semiconductor optical amplifiers," IEEE J. Sel. Top. Quant. Electron. 9, 788-797 (2003).
  33. P. K. Pepeljugoski, K. Y. Lau, "Interferometric noise reduction in fiber-optic links by superposition of high frequency modulation," IEEE J. Lightw. Technol. 10, 957-963 (1992).
  34. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
  35. RSOA datasheet (Device No. 02852), Centre for Integrated Photonics.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited