OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 22 — Nov. 15, 2009
  • pp: 5045–5055

High-Bit-Rate Dense SS-WDM PON Using SOA-Based Noise Reduction With a Novel Balanced Detection

Walid Mathlouthi, Francesco Vacondio, and Leslie A. Rusch

Journal of Lightwave Technology, Vol. 27, Issue 22, pp. 5045-5055 (2009)

View Full Text Article

Acrobat PDF (1263 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The major drawback of incoherent broadband sources (BBSs) is their inherent intensity noise. Semiconductor optical amplifiers (SOAs) can be exploited at the transmitter to mitigate this noise. Optical filtering at the receiver, however, leads to the return of most of suppressed noise. Wider filtering at the receiver is the best known strategy to maintain performance gains, at the price of reduced spectral efficiency due to the tradeoff between noise cleaning and adjacent channel crosstalk. We introduce a novel balanced receiver for wavelength division multiplexing (WDM) systems that maintains greater noise cleaning and leaves spectral efficiency unchanged. Unlike standard receivers, our balanced scheme does not filter the desired signal. In this paper, we first demonstrate that the newly proposed receiver is equivalent to standard WDM receivers when no SOA for noise cleaning is present at the transmitter. Although a 2.9-dB power penalty is incurred, network capacity is unchanged, i.e., bit error rate (BER) floors due to intensity noise are the same. When SOAs are employed to mitigate severe intensity noise, we show that our receiver outperforms the wide filtering strategy by two orders of magnitude. Dense WDM capacity is demonstrated up to 10 Gb/s using a thermal source, a saturated SOA, and the balanced detection scheme. A BER of $10^{-6}$ is achieved at 10 Gb/s; further improvement is possible using low overhead forward error correction or a better SOA design. This demonstrates the ability of spectrum-sliced wavelength division multiplexing (SS-WDM) passive optical networks (PONs) to operate at 10 Gb/s at good spectral efficiency. Error performance better than $10^{-9}$ is achieved up to 8 Gb/s with 30-GHz optical channel bandwidth and 100-GHz spacing.

© 2009 IEEE

Walid Mathlouthi, Francesco Vacondio, and Leslie A. Rusch, "High-Bit-Rate Dense SS-WDM PON Using SOA-Based Noise Reduction With a Novel Balanced Detection," J. Lightwave Technol. 27, 5045-5055 (2009)

Sort:  Year  |  Journal  |  Reset


  1. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, K. H. Song, "Fiber-to-the-home services based on wavelength division multiplexing passive optical network," J. Lightw. Technol. 22, 2582-2591 (2004).
  2. R. P. Davey, D. B. Grossman, M. Rasztovits-Wiech, D. B. Payne, D. Nesset, A. E. Kelly, A. Rafel, S. Appathurai, S.-H. Yang, "Long-reach passive optical networks," J. Lightw. Technol. 27, 273-291 (2009).
  3. C.-H. Lee, W. Sorin, B.-Y. Kim, "Fiber to the home using a PON infrastructure," J. Lightw. Technol. 24, 4568-4583 (2006).
  4. S. B. Park, K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, S. Hwang, Y. K. Oh, Y. J. Oh, "Demonstration of DWDM-PON employing spectrum-sliced RSOA over 90C temperature range," Proc. Eur. Conf. Opt. Commun. (2006).
  5. F. Payoux, P. Chanclou, M. Moignard, R. Brenot, "Gigabit optical access using WDM PON based on spectrum slicing and reflective SOA," Proc. Eur. Conf. Opt. Commun. (2005) pp. 455-456.
  6. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, R. Moore, "Spectral slicing WDM-PON using wavelength-seeded reflective SOAs," IEE Electron. Lett. 37, 1181-1182 (2001).
  7. H. D. Kim, S.-G. Kang, C. H. Lee, "A low cost WDM source with an ASE injected Fabry-Pérot semiconductor laser," IEEE Photon. Technol. Lett. 12, 1067-1069 (2000).
  8. J. S. Lee, C. H. Chung, D. J. Digiovanni, "Spectrum-sliced fiber amplifier light source for multi-channel WDM application," IEEE Photon. Technol. Lett. 5, 1458-1461 (1993).
  9. G. J. Pendock, D. D. Sampson, "Transmission performance of high bit rate spectrum-sliced WDM systems," J. Lightw. Technol. 14, 2141-2148 (1996).
  10. K.-M. Choi, J.-S. Baik, C.-H. Lee, "Color-free operation of dense WDM-PON based on the wavelength-locked Fabry-Prot laser diodes injecting a low-noise BLS," IEEE Photon. Technol. Lett. 18, 1167-1169 (2006).
  11. S.-M. Lee, K.-M. Choi, S.-G. Mun, J.-H. Moon, C.-H. Lee, "Dense WDM-PON based on wavelength-locked Fabry-Pérot laser diodes," IEEE Photon. Technol. Lett. 17, 1579-1581 (2005).
  12. T. Yamatoya, F. Koyama, "Optical preamplifier using optical modulation of amplified spontaneous emission in saturated semiconductor optical amplifier," J. Lightw. Technol. 22, 1290-1295 (2004).
  13. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, D. J. Richardson, "Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems," J. Lightw. Technol. 23, 2399-2409 (2005).
  14. A. D. McCoy, P. Horak, M. Ibsen, D. J. Richardson, "Performance comparison of spectrum-slicing techniques employing SOA-based noise suppression at the transmitter or receiver," IEEE Photon. Technol. Lett. 18, 1494-1496 (2006).
  15. M. Menif, W. Mathlouthi, P. Lemieux, L. A. Rusch, M. Roy, "Error-free transmission for incoherent broadband optical communications systems using incoherent-to-coherent wavelength conversion," J. Lightw. Technol. 23, 287-294 (2005).
  16. S.-J. Kim, J.-H. Han, J.-S. Lee, C.-S. Park, "Intensity noise suppression in spectrum-sliced incoherent light communication systems using a gain-saturated semiconductor optical amplifier," IEEE Photon. Technol. Lett. 11, 1042-1044 (1999).
  17. A. J. Keating, W. T. Holloway, D. D. Sampson, "Feedforward noise reduction of incoherent light for spectrum-sliced transmission at 2.5 Gb/s," IEEE Photon. Technol. Lett. 7, 1513-1515 (1995).
  18. J. H. Han, J. W. Ko, J. S. Lee, S. Y. Shin, "0.1-nm narrow bandwidth transmission of a 2.5-Gb/s spectrum-sliced incoherent light channel using an all optical bandwidth expansion technique at the receiver," IEE Electron. Lett. 10, 1501-1503 (1998).
  19. P. Chanclou, F. Payoux, T. Soret, N. Genay, R. Brenot, F. Blache, M. Goix, J. Landreau, O. Legouezigou, F. Mallécot, "Demonstration of RSOA-based remote modulation at 2.5 and 5 Gb/s for WDM-PON," Proc. Opt. Fiber Commun. (2007).
  20. W. Lee, M. Y. Park, S. H. Cho, J. H. Lee, C. Y. Kim, G. Jeong, B. Y. Kim, "Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 17, 2460-2462 (2005).
  21. S. J. Park, G. Y. Kim, T. S. Park, "WDM-PON system based on the laser light injected reflective semiconductor optical amplifier," Opt. Fiber Technol. 12, 162-169 (2006).
  22. F. Payoux, P. Chanclou, N. Genay, "WDM-PON with colourless ONUs," Proc. Opt. Fiber Conf. (2007).
  23. K. Hoon, K. Sangho, H. Seongtaek, O. Yunje, "Impact of dispersion, PMD, and PDL on the performance of spectrum-sliced incoherent light sources using gain-saturated semiconductor optical amplifiers," J. Lightw. Technol. 24, 775-785 (2006).
  24. K. Hoon, C. J. Ho, H. K. Chul, "Effects of intraband crosstalk on incoherent light using SOA-based noise suppression technique," IEEE Photon. Technol. Lett. 18, 1542-1544 (2006).
  25. W. Mathlouthi, F. Vacondio, J. Penon, A. Ghazisaeidi, L. A. Rusch, "DWDM achieved with thermal sources: A future-proof PON solution," Proc. Eur. Conf. Commun. (2007) pp. 445-446.
  26. D. J. Shin, D. K. Jung, J. K. Lee, Y. K. Oh, J. H. Lee, H. S. Kim, C. H. Lee, S. T. Hwang, J. H. Ko, Y. J. Oh, T. I. Kim, C. S. Shim, "Transmission of HDTV and ethernet data over a WDM-PON employing ASE-injected Fabry-Pérot laser diodes," Proc. Opt. Fiber Conf. (2004).
  27. M. Abtahi, S. Ayotte, J. Penon, L. A. Rusch, "Intensity noise in balanced detection of correlated incoherent signals," Proc. IASTED Int. Conf. Wireless Opt. Commun. (2007) pp. 204-209.
  28. D. Sampson, W. T. Holloway, "100 mW spectrally-uniform broadband ASE source for spectrum-sliced WDM systems," IEE Electron. Lett. 30, 1611-1612 (1994).
  29. J. S. Lee, Y. C. Chung, "Spectrum-sliced channel transmission over 94 km of dispersion-shifted fiber at 1.7 Gbs$^{-1}$ using a double-stage fibre amplifier light source," Opt. Quantum Electron. 27, 541-546 (1995).
  30. C. F. Lam, M. D. Feuer, N. J. Frigo, "Performance of pin and APD receivers in high-speed WDM data transmission systems employing spectrally sliced spontaneous emission sources," IEE Electron. Lett. 36, 1572-1574 (2000).
  31. W. Mathlouthi, P. Lemieux, L. A. Rusch, "Optimal SOA-based noise reduction schemes for incoherent spectrum-sliced PONs," Proc. Eur. Conf. Opt. Commun. (2006).
  32. R. J. Manning, X. Yang, R. P. Webb, R. Giller, F. C. Garcia Gunning, A. D. Ellis, "The turbo-switch—A novel technique to increase the high-speed response of SOAs for wavelength conversion," Proc. Opt. Fiber Conf. (2006).
  33. M. Sugawara, N. Hatori, M. Ishida, H. Ebe, Y. Arakawa, T. Akiyama, K. Otsubo, T. Yamamoto, Y. Nakata, "Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: Temperature-insensitive 10 Gbs$^{-1}$ directly modulated lasers and 40 Gbs$^{-1}$ signal-regenerative amplifiers," J. Phys. D, Appl. Phys. 38, 2126-2134 (2005).
  34. A. J. Zilkie, J. Meier, M. Mojahedi, P. J. Polle, P. Barrios, D. Poitras, T. J. Rotter, C. Yang, A. Stintz, K. J. Malloy, P. W. E. Smith, J. S. Aitchison, "Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55 $\mu$m," IEEE J. Quantum Electron. 43, 982-991 (2007).
  35. E. Wong, K. L. Lee, T. B. Anderson, "Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks," J. Lightw. Technol. 25, 67-74 (2007).
  36. H.-C. Kwon, Y.-Y. Won, S.-K. Han, "A self-seeded reflective SOA-based optical network unit for optical beat interference robust WDM/SCM-PON link," IEEE Photon. Technol. Lett. 18, 1852-1854 (2006).
  37. N. Nadarajah, K. L. Lee, A. Nirmalathas, "Upstream access and local area networking in passive optical networks using self-seeded reflective semiconductor optical amplifier," IEEE Photon. Technol. Lett. 19, 1559-1561 (2007).
  38. J. M. Kang, T.-Y. Kim, I.-H. Choi, S.-H. Lee, S.-K. Han, "Self-seeded reflective semiconductor optical amplifier based optical transmitter for up-stream WDM-PON link," IET Optoelectron. 1, 77-81 (2007).
  39. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, J. C. Campbell, "Monolithic germanium/silicon avalanche photodiodes with 340 GHz gainbandwidth product," Nature Photon. 3, 59-63 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited