OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 22 — Nov. 15, 2009
  • pp: 5106–5114

DQPSK: When Is a Narrow Filter Receiver Good Enough?

Francesco Vacondio, Amirhossein Ghazisaeidi, Alberto Bononi, and Leslie A. Rusch

Journal of Lightwave Technology, Vol. 27, Issue 22, pp. 5106-5114 (2009)

View Full Text Article

Acrobat PDF (1743 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, we investigate experimentally and via simulation the pros and cons of a narrow filter receiver for differential quadrature phase-shift keying based on a single optical filter and eschewing the conventional asymmetrical Mach–Zehnder interferometer structure. We quantify the performance differences between the two receivers, allowing system designers and operators to determine when the less complex narrow filter receiver might be the appropriate choice. We numerically optimize the 3-dB bandwidth and center frequency of the narrow filter and show it is more robust to carrier frequency detuning than the conventional solution. We show that the narrow filter receiver is more tolerant to chromatic dispersion (CD) than the conventional one, and equally tolerant to first-order polarization-mode dispersion. We show the impact of the 3-dB bandwidth on the receiver performance when CD accumulates. Finally, we show via experiments and simulations that the 3 dB advantage of the conventional receiver vanishes when the nonlinear impairments are fiber nonlinearities; comparing the two receivers at the optimum launch power for a 25$\,\times\,$80 km system, the difference in optical SNR margin is reduced to ${\sim} {\hbox {1.6}}$ dB. Experiments are conducted at 42 Gb/s using a commercially available narrow filter for reception.

© 2009 IEEE

Francesco Vacondio, Amirhossein Ghazisaeidi, Alberto Bononi, and Leslie A. Rusch, "DQPSK: When Is a Narrow Filter Receiver Good Enough?," J. Lightwave Technol. 27, 5106-5114 (2009)

Sort:  Year  |  Journal  |  Reset


  1. P. J. Winzer, R.-J. Essiambre, "Advanced optical modulation formats," Proc. IEEE 94, 952-985 (2006).
  2. P. J. Winzer, G. Raybon, H. Song, A. Adamiecki, S. Corteselli, A. H. Gnauck, D. A. Fishman, C. R. Doerr, S. Chandrasekhar, L. L. Buhl, T. J. Xia, G. Wellbrock, W. Lee, B. Basch, T. Kawanishi, K. Higuma, Y. Painchaud, "100-Gb/s DQPSK transmission: From laboratory experiments to field trials," J. Lightw. Technol. 26, 3388-3402 (2008).
  3. E. Ciaramella, G. Contestabile, A. D'Errico, "A novel scheme to detect optical DPSK signals," IEEE Photon. Technol. Lett. 16, 2138-2140 (2004).
  4. C. W. Chow, H. K. Tsang, "Polarization-independent DPSK demodulation using a birefringent fiber loop," IEEE Photon. Technol. Lett. 17, 1313-1315 (2005).
  5. L. Christen, Y. Lize, S. Nuccio, L. Paraschis, A. Willner, "Experimental demonstration of reduced complexity 43-Gb/s RZ-DQPSK rate-tunable receiver," IEEE Photon. Technol. Lett. 20, 1166-1168 (2008).
  6. P. J. Winzer, S. Chandrasekhar, H. Kim, "Impact of filtering on RZ-DPSK reception," IEEE Photon. Technol. Lett. 15, 840-842 (2003).
  7. D. Penninckx, H. Bissessur, P. Brindel, E. Gohin, F. Bakhti, "Optical differential phase shift keying (DPSK) direct detection considered as a duobinary signal," Proc. 27th Eur. Conf. Opt. Commun. (ECOC 2001) () pp. 456-457.
  8. I. Lyubomirsky, C.-C. Chien, "DPSK demodulator based on optical discriminator filter," IEEE Photon. Technol. Lett. 17, 492-494 (2005).
  9. A. D'Errico, R. Proietti, L. Giorgi, G. Contestabile, E. Ciaramella, "WDM-DPSK detection by means of frequency-periodic Gaussian filtering," Electron. Lett. 42, 112-114 (2006).
  10. E. Forestieri, G. Prati, "Narrow filtered DPSK implements order-1 CAPS optical line coding," IEEE Photon. Technol. Lett. 16, 662-664 (2004).
  11. L. Christen, Y. K. Lize, S. Nuccio, J.-Y. Yang, P. Saghari, A. E. Willner, L. Paraschis, "Fiber Bragg grating balanced DPSK demodulation," Proc. 19th Annu. Meeting IEEE Lasers Electro-Opt. Soc. (LEOS 2006) () pp. 563-564.
  12. G. Contestabile, R. Proietti, N. Calabretta, M. Presi, A. D'Errico, E. Ciaramella, "Simultaneous demodulation and clock-recovery of 40-Gb/s NRZ-DPSK signals using a multiwavelength Gaussian filter," IEEE Photon. Technol. Lett. 20, 791-793 (2008).
  13. I. Lyubomirsky, C. Chien, Y. Wang, "Optical DQPSK receiver with enhanced dispersion tolerance," IEEE Photon. Technol. Lett. 20, 511-513 (2008).
  14. B. Mikkelsen, C. Rasmussen, P. Mamyshev, F. Liu, "Partial DPSK with excellent filter tolerance and OSNR sensitivity," Electron. Lett. 42, 1363-1364 (2006).
  15. C. Malouin, J. Bennike, T. J. Schmidt, "Differential phase-shift keying receiver design applied to strong optical filtering," J. Lightw. Technol. 25, 3536-3542 (2007).
  16. M. Haris, J. Yu, G. Chang, "Impact of free spectral range optimization on RZ/NRZ DQPSK modulation format with strong optical filtering for ultrahigh data rate systems," Proc. 20th Annu. Meeting IEEE Lasers Electro-Opt. Soc. (LEOS 2007) () pp. 141-142.
  17. Y. K. Lize, X. Wu, M. Nazarathy, Y. Atzmon, L. Christen, S. Nuccio, M. Faucher, N. Godbout, A. E. Willner, "Chromatic dispersion tolerance in optimized NRZ-, RZ-, and CSRZ-DPSK demodulation," Opt. Exp. 16, 4228-4236 (2008).
  18. V. Mikhailov, R. I. Killey, P. Bayvel, "Experimental investigation of partial demodulation of 85.3 gb/s DQPSK signals," Proc. 34th Eur. Conf. Opt. Commun. (ECOC 2008) pp. 1-2.
  19. H. Kim, A. H. Gnauck, "Experimental investigation of the performance limitation of DPSK systems due to nonlinear phase noise," IEEE Photon. Technol. Lett. 15, 320-322 (2003).
  20. Y. Yadin, M. Orenstein, M. Shtaif, "Balanced versus single-ended detection of DPSK: Degraded advantage due to fiber nonlinearities," IEEE Photon. Technol. Lett. 19, 164-166 (2007).
  21. R. A. Griffin, "Integrated DQPSK transmitters," Proc. Opt. Fiber Commun. Conf. 2005 () pp. 3.
  22. S. Walklin, J. Conradi, "Effect of Mach–Zehnder modulator DC extinction ratio on residual chirp-induced dispersion in 10-Gb/s binary and AM-PSK duobinary lightwave systems," IEEE Photon. Technol. Lett. 9, 1400-1402 (1997).
  23. H. Kim, A. Gnauck, "Chirp characteristics of dual-drive Mach–Zehnder modulator with a finite DC extinction ratio," IEEE Photon. Technol. Lett. 14, 298-300 (2002).
  24. D. van den Borne, G. Khoe, H. de Waardt, E. Gottwald, "Bit pattern dependence in optical DQPSK modulation," Electron. Lett. 43, (2007).
  25. J.-S. Lee, C.-S. Shim, "Bit-error-rate analysis of optically preamplified receivers using an eigenfunction expansion method in optical frequency domain," J. Lightw. Technol. 12, 1224-1229 (1994).
  26. E. Forestieri, "Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre- and postdetection filtering," J. Lightw. Technol. 18, 1493-1503 (2000).
  27. E. Forestieri, "(Corrections to) evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre- and postdetection filtering," J. Lightw. Technol. 21, 1592 (2003).
  28. G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, S. Benedetto, "A novel analytical approach to the evaluation of the impact of fiber parametric gain on the bit error rate," IEEE Trans. Commun. 49, 2154-2163 (2001).
  29. J. Wang, J. M. Kahn, "Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection," J. Lightw. Technol. 22, 362-371 (2004).
  30. P. Serena, A. Orlandini, A. Bononi, "Parametric-gain approach to the analysis of single-channel DPSK/DQPSK systems with nonlinear phase noise," J. Lightw. Technol. 24, 2026-2037 (2006).
  31. H. Kim, P. Winzer, "Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems," J. Lightw. Technol. 21, 1887-1891 (2003).
  32. K. Ho, "The effect of interferometer phase error on direct-detection DPSK and DQPSK signals," IEEE Photon. Technol. Lett. 16, 308-310 (2004).
  33. G. Bosco, P. Poggiolini, "On the joint effect of receiver impairments on direct-detection DQPSK systems," J. Lightw. Technol. 24, 1323-1333 (2006).
  34. A. H. Gnauck, P. J. Winzer, C. Dorrer, S. Chandrasekhar, "Linear and nonlinear performance of 42.7-Gb/s single-polarization RZ-DQPSK format," IEEE Photon. Technol. Lett. 18, 883-885 (2006).
  35. J. P. Gordon, L. F. Mollenauer, "Phase noise in photonic communications systems using linear amplifiers," Opt. Lett. 15, 1351-1353 (1990).
  36. M. C. Jeruchim, P. Balaban, K. S. Shanmugan, Simulation of Communication Systems: Modeling, Methodology, and Techniques (Springer-Verlag, 2000).
  37. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited