OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 22 — Nov. 15, 2009
  • pp: 5192–5201

Optical Power Transmission Through Adhesive and Bonding Layers

Arsen V. Subashiev and Serge Luryi

Journal of Lightwave Technology, Vol. 27, Issue 22, pp. 5192-5201 (2009)


View Full Text Article

Acrobat PDF (943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we analyze the optical power transmission in structures that include a low-index intermediate layer and sources with a wide angular distribution. Special attention is paid to the angular average of the transmission coefficient, which can be cast in a universal form for two practically relevant classes of source layers. Due to the so-called frustrated total internal reflection, the structure transparency is highly sensitive to the intermediate layer thickness and index contrast. We show that the transmission coefficient for isotropic radiation may remain low even for optically thin low-index intermediate layers, so that the usual comparison between the optical thickness and the wavelength is no longer a reliable criterion. Calculations are presented for exemplary structures, such as a semiconductor scintillator bonded to a photodiode. The angular dependence of the transmission coefficient is shown to satisfy a simple and universal sum rule.

© 2009 IEEE

Citation
Arsen V. Subashiev and Serge Luryi, "Optical Power Transmission Through Adhesive and Bonding Layers," J. Lightwave Technol. 27, 5192-5201 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-22-5192


Sort:  Year  |  Journal  |  Reset

References

  1. T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Opto-Electronics (Butterworth, 1973).
  2. D. Delbeke, R. Bockstaele, P. Bienstman, R. Baets, H. Benisty, "High-efficiency semiconductor resonant-cavity light-emitting diodes: A review," IEEE J. Sel. Topics Quantum Electron. 8, 189-206 (2002).
  3. M. A. Remennyi, N. V. Zotova, A. A. Kardashev, B. A. Matveev, N. M. Stus', G. N. Talalakin, "Low voltage episide down bonded mid-IR diode optopairs for gas sensing in the 3.3–4.3 $\mu$m spectral range," Sens. Actuators B, Chem. 91, 256-261 (2003).
  4. H. Gauck, T. H. Gfroerer, M. J. Rean, E. A. Cornell, K. A. Bertness, "External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure," Appl. Phys. A, Mater. Sci. Process. 64, 143-147 (1997).
  5. A. A. Kastalsky, S. Luryi, B. Spivak, "Semiconductor high-energy radiation scintillation detector," Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc. Equip. 565, 650-656 (2006).
  6. D. Liang, A. W. Fang, H. Park, T. E. Reynolds, K. Warner, D. C. Oakley, J. E. Bowers, "Low temperature, strong SiO$_2$-SiO$_2$ covalent wafer bonding for III--V compound semiconductors-to-silicon photonic integrated circuits," J. Electron. Mater. 37, 1552-1559 (2008).
  7. S. Zhu, A. W. Yu, D. Hawley, R. Roy, "Frustrated total internal reflection: A demonstration and review," Amer. J. Phys. 54, 601-607 (1986).
  8. L. D. Landau, E. M. Lifshitz, Statistical Physics (Pergamon, 1984).
  9. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, "Ultrahigh spontaneous quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures," Appl. Phys. Lett. 62, 131-133 (1993).
  10. M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).
  11. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  12. I. N. Court, F. K. Willisen, "Frustrated total internal reflection and application of its principle to laser cavity design," Appl. Opt. 3, 719-726 (1964).
  13. F. Abelès, "Optical properties of thin absorbing films," J. Opt. Soc. Amer. 47, 473-482 (1957).
  14. A. Mereuta, V. Iakovlev, A. Caliman, A. Syrbu, P. Royo, A. Rudra, E. Kapon, "In(Al)GaAs-AlGaAs wafer fused VCSELs emitting at 2-$\mu$m wavelength," IEEE Photon. Technol. Lett. 20, 24-26 (2008).
  15. L. Sagalowicz, A. Rudra, E. Kapon, M. Hammar, F. Salomonsson, A. Black, P.-H. Jouneau, T. Wipijewski, "Defects, structure, and chemistry of InP-GaAs interfaces obtained by wafer bonding," J. Appl. Phys. 87, 4135-4146 (2000).
  16. W. van Roosbroeck, W. Shockley, "Photon-radiative recombination of electrons and holes in germanium," Phys. Rev. 94, 1558-1560 (1954).
  17. P. M. Mathews, K. Venkatesan, A Textbook of Quantum Mechanics (McGraw-Hill, 1978) pp. 62.
  18. M. Visser, "Some general bounds for one-dimensional scattering," Phys. Rev. A, Gen. Phys. 59, 427-438 (1999).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited