OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 22 — Nov. 15, 2009
  • pp: 5202–5207

AWG-Based Tunable Optical Dispersion Compensator With Multiple Lens Structure

Yuichiro Ikuma and Hiroyuki Tsuda

Journal of Lightwave Technology, Vol. 27, Issue 22, pp. 5202-5207 (2009)


View Full Text Article

Acrobat PDF (815 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose an arrayed-waveguide grating (AWG)-based tunable optical dispersion compensator (TODC) that uses a multiple lens structure with two lens materials. The lenses are realized by filling lens-shaped trenches in a slab waveguide with optical resins. The thermooptic effect provided by the lens materials realizes the desired dispersion tuning function. The multiple lens structure enables us to design the center dispersion and the dispersion tuning range independently. We fabricate a TODC based on a 10-ch, 10-GHz spacing AWG that uses resins with refractive indexes of 1.393 and 1.510. Its dispersion range is 0 to ${+}$125 ps/nm. We also perform a transmission experiment using a 12.5 Gbps RZ-OOK signal. The power penalty at the bit error rate of 10$^{- 9}$ is less than 3 dB; and error-free transmission is confirmed after dispersion compensation.

© 2009 IEEE

Citation
Yuichiro Ikuma and Hiroyuki Tsuda, "AWG-Based Tunable Optical Dispersion Compensator With Multiple Lens Structure," J. Lightwave Technol. 27, 5202-5207 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-22-5202


Sort:  Year  |  Journal  |  Reset

References

  1. L.-S. Yan, T. Luo, Q. Yu, Y. Xie, K.-M. Feng, R. Khosravani, A. E. Willner, "Investigation of performance variations due to the amplitude of group-delay ripple in chirped fiber Bragg gratings," Opt. Fiber Technol. 12, 238-242 (2006).
  2. H. Ooi, K. Nakamura, Y. Akiyama, T. Takahara, T. Terahara, Y. Kawahata, H. Isono, G. Ishikawa, "40-Gb/s WDM transmission with virtually imaged phased array (VIPA) variable dispersion compensators," J. Lightw. Technol. 20, 2196-2203 (2002).
  3. G.-H. Lee, S. Xiao, A. M. Weiner, "Optical dispersion compensator with ${>}4000$-ps/nm tuning range using a virtually imaged phased array (VIPA) and spatial light modulator (SLM)," IEEE Photon. Technol. Lett. 18, 1819-1821 (2006).
  4. H. Tsuda, T. Ishii, K. Naganuma, H. Takenouchi, K. Okamoto, Y. Inoue, T. Kurokawa, "Second- and third-order dispersion compensator using a high-resolution arrayed-waveguide grating," IEEE Photon. Technol. Lett. 11, 569-571 (1999).
  5. H. Tsuda, H. Takenouchi, A. Hirano, T. Kurokawa, K. Okamoto, "Performance analysis of a dispersion compensator using arrayed-waveguide gratings," J. Lightw. Technol. 18, 1139-1147 (2000).
  6. K. Takiguchi, K. Okamoto, K. Moriwaki, "Planar lightwave circuit dispersion equalizer," J. Lightw. Technol. 14, 2003-2011 (1996).
  7. C. K. Madsen, G. Lenz, A. J. Bruce, M. A. Cappuzzo, L. T. Gomez, R. E. Scotti, "Integrated all-pass filters for tunable dispersion and dispersion slope compensation," IEEE Photon. Technol. Lett. 11, 1623-1625 (1999).
  8. C. R. Doerr, R. Blum, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, A. Wong-Foy, L. T. Gomez, H. Bulthuis, "Colorless tunable optical dispersion compensator based on a silica arrayed-waveguide grating and a polymer thermooptic lens," IEEE Photon. Technol. Lett. 18, 1222-1224 (2006).
  9. C. R. Doerr, S. Chandrasekhar, L. L. Buhl, "Tunable optical dispersion compensator with increased bandwidth via connection of a Mach–Zehnder interferometer to an arrayed-waveguide grating," IEEE Photon. Technol. Lett. 20, 560-562 (2008).
  10. J. Ito, H. Tsuda, "Small bend structures using trenches filled with low-refractive index material for miniaturizing silica planar lightwave circuits," J Lightw. Technol., to be published..
  11. Y. Kokubun, S. Yoneda, S. Matsuura, "Temperature-independent optical filter at 1.55 $\mu$m wavelength using a silica-based athermal waveguide," Electron Lett. 34, 367-369 (1998).
  12. M. Itoh, S. Kamei, M. Ishii, T. Shibata, M. Tamura, Y. Inoue, "Ultra-small 40-channel athermal arrayed-waveguide grating module with low-loss groove design," Electron Lett. 44, 1271-1272 (2008).
  13. S. Kamei, M. Kohtoku, T. Shibata, T. Kitoh, "Athermal Mach–Zehnder interferometer-synchronised arrayed waveguide grating multi/demultiplexer with low loss and wide passband," Electron. Lett. 44, 201-202 (2008).
  14. T. Suzuki, K. Masuda, H. Ishikawa, Y. Abe, S. Kashimura, H. Uetsuka, H. Tsuda, "Dispersion compensator using a compact arrayed-waveguide grating with a dispersion-adjusting structure," IEICE Electron. Express 3, 58-63 (2006).
  15. Y. Ikuma, H. Tsuda, "Tunable optical dispersion compensator using integrated lens-shaped phase shifters in an arrayed-waveguide grating," 34th Eur. Conf. Exhibition Opt. Commun. BrusselsBelgium (2008) P.2.19.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited