OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 4 — Feb. 15, 2009
  • pp: 409–416

Experimental Demonstrations of All-Optical Phase-Multiplexing Using FWM-Based Phase Interleaving in Silica and Bismuth-Oxide HNLFs

Guo-Wei Lu, Kazi Sarwar Abedin, and Tetsuya Miyazaki

Journal of Lightwave Technology, Vol. 27, Issue 4, pp. 409-416 (2009)

View Full Text Article

Acrobat PDF (1397 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We propose an all-optical phase-interleaving technology based on dual-pump four-wave mixing (FWM) in highly nonlinear fiber (HNLF). The proposed all-optical phase-interleaving technology is applied in an all-optical phase-multiplexing scheme to successfully phase-multiplex 2x or 3$\,\times\,$10-Gb/s DPSK-WDM signals to a 20- or 30-Gb/s DPSK in non-return-to-zero (NRZ) formats. The proposed all-optical phase multiplexing scheme is demonstrated using dual-pump FWM in highly nonlinear silica and bismuth fibers. In contrast with optical time-division multiplexing technology, the proposed all-optical phase-multiplexing technology does not require pulse-carving, thus offering a high spectral-efficiency. Differential precoder for each input tributary is operated independently, and no additional encoder or postcoder is required to recover the original data after demodulation on the receiver side.

© 2009 IEEE

Guo-Wei Lu, Kazi Sarwar Abedin, and Tetsuya Miyazaki, "Experimental Demonstrations of All-Optical Phase-Multiplexing Using FWM-Based Phase Interleaving in Silica and Bismuth-Oxide HNLFs," J. Lightwave Technol. 27, 409-416 (2009)

Sort:  Year  |  Journal  |  Reset


  1. M. Saruwatari, "All-optical signal processing for terabit/second optical transmission," IEEE J. Sel. Topics Quant. Electron. 6, 1363-1374 (2000).
  2. K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightw. Technol. 10, 1553-1561 (1992).
  3. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, R. S. Windeler, "Four-wave mixing in a microstructure fiber," Opt. Lett. 26, 1048-1050 (2001).
  4. K. Inoue, H. Toha, "Wavelength conversion experiment using fiber four-wave mixing," IEEE Photon. Technol. Lett. 4, 69-72 (1992).
  5. K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6, 1451-1453 (1994).
  6. Y. Wang, C. Yu, T. Luo, L. Yan, Z. Pan, A. E. Willner, "Tunable all-optical wavelength conversion and wavelength multicasting using orthogonally polarized fiber FWM," J. Lightw. Technol. 23, 3331-3338 (2005).
  7. S. Watanabe, T. Naito, T. Chikama, "Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation," IEEE Photon. Technol. Lett. 5, 91-95 (1993).
  8. A. Bogris, D. Syvridis, "Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers," J. Lightw. Technol. 21, 1892-1902 (2003).
  9. T. Morioka, S. Kawanishi, H. Takara, M. Saruwatari, "Multiple-output, 100 Gbit/s all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly chirped square pulse," Electron. Lett. 30, 1959-1959 (1994).
  10. R. H. Stolen, J. E. Bjorkholm, "Parametric amplification and frequency conversion in optical fibers," IEEE J. Quant. Electron. QE-18, 1062-1072 (1982).
  11. M. E. Marhic, N. Kagi, T.-K. Chiang, L. G. Kazovsky, "Broadband fiber optical parametric amplifiers," Opt. Lett. 21, 573-575 (1996).
  12. J. Hansryd, P. A. Andrekson, M. Westlund, J. L. O. Hedekvist, "Fiber-based optical parmetric amplfiiers and their applications," IEEE J. Sel. Topics Quant. Electron. 8, 506-520 (2002).
  13. C. J. McKinstrie, S. Radic, A. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE Sel. Topics Quant. Electron. 8, 538-547 (2002).
  14. K. K. Y. Wong, M. E. Marhic, K. Uesaka, L. G. Kazovsky, "Polarization-independent two-pump fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 14, 911-913 (2002).
  15. J. H. A. Andrekson, "Wavelength tunable 40 GHz pulse source based on fiber optical parametric amplifier," Electron. Lett. 37, 584-585 (2001).
  16. S. Radic, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, J. C. Centanni, A. R. Chraplyvy, "Multiple-band bit-level switching in two-pump fiber parametric devices," IEEE Photon. Technol. Lett. 16, 852-854 (2004).
  17. J. Li, J. Hansryd, P. O. Hedekvist, P. A. Andrekson, S. N. Knudsen, "300 Gbit/s eye-diagram measurement by optical sampling using fiber-based parametric amplification," IEEE Photon. Technol. Lett. 13, 987-989 (2001).
  18. G. D. Bartolini, D. K. Serkland, P. K. L. Kath, "All-optical storage of a picosecond-pulse packet using parametric amplification," IEEE Photon. Technol. Lett. 9, 1020-1022 (1997).
  19. E. Shumakher, A. Willinger, R. Blit, D. Dahan, G. Eisenstein, "Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification," Opt. Exp. 14 8540-8545 (2006).
  20. Y. Su, L. Wang, A. Agarwal, P. Kumar, "All-optical limiter using gain flattened fiber parametric amplifier," Electron. Lett. 36, 1103-1104 (2000).
  21. S. Radic, C. J. McKinstrie, R. M. Jopson, J. C. Centanni, A. R. Chraplyvy, "All-optical regeneration in one-and two-pump parametric amplifiers using highly nonlinear optical fiber," IEEE Photon. Technol. Lett. 15, 957-959 (2003).
  22. K. Croussore, I. Kim, Y. Han, C. Kim, G. Li, S. Radic, "Demonstration of phase-regeneration of DPSK signals based on phase-sensitive amplification," Opt. Exp. 13 3945-3950 (2005).
  23. H.-G. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, C. Schubert, "Ultrahigh-speed OTDM-transmission technology," J. Lightw. Technol. 24, 4616-4627 (2006).
  24. B. Mukherjee, "WDM optical communication networks: Progress and challenges," IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000).
  25. J.-X. Cai, O. V. Sinkin, C. R. Davidson, D. G. Foursa, A. J. Lucero, M. Nissov, A. N. Pilipetskii, W. W. Patterson, N. S. Bergano, "40 Gb/s transmission using polarization division multiplexing (PDM) RZ-DBPSK with automatic polarization tracking," Tech. Dig. Conf. Optical Fiber Communication (2008) Paper PDP4.
  26. D. McGhan, C. Laperle, A. Savchenko, L. Chuandong, G. Mak, M. O'Sullivan, "5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation," Proc. Tech. Dig. Conf. Optical Fiber Communication (2005) pp. 79-81.
  27. A. H. Gnauck, G. Raybon, S. Chandrasekhar, J. Leuthold, C. Doerr, L. Stulz, E. Burrows, "25$\,\times\,$40-Gb/s copolarized DPSK transmission over 12$\,\times\,$100-km NZDF with 50-GHz channel spacing," IEEE Photon. Technol. Lett. 15, 467-469 (2003).
  28. G.-W. Lu, K. S. Abedin, T. Miyazaki, "Wideband all-optical phase interleaving technology enabling phase-multiplexing of 3$\,\times\,$10-Gb/s DPSK-WDM into 30-Gb/s DPSK using FWM in HNLF," Eur. Conf. Optical Communications (ECOC) (2007) Post-deadline paper PD1.4.
  29. J. H. Lee, T. Nagashima, T. Hasegwa, S. Ohara, N. Sugimoto, T. Tanemura, K. Kikuchi, "Wavelength conversion of 40-Gbit/s NRZ signal using four-wave mixing in 40-cn-long bismuth oxide based highly-nonlinear optical fiber," OFC (2005) paper PDP 23.
  30. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, K. Kikuchi, "Bismuth-based optical fiber with nonlinear coefficient of 1360 ${\hbox {W}}^{-1}{\hbox {km}}^{-1}$," OFC (2004) Post-Deadline Paper PDP26.
  31. G.-W. Lu, T. Miyazaki, "A spectrum-efficient 80-Gbit/s DPSK transmitter using phase interleaving technology without optical-time or polarization-division multiplexing," IEEE LEOS Summer Topical Meet. (2007) Paper TuE3. 4.
  32. C. P. Kaiser, P. J. Smith, M. Shafi, "An improved optical heterodyne DPSK receiver to combat laser phase noise," J. Lightw. Technol. 13, 525-533 (1995).
  33. M. Hirano, T. Nakanishi, T. Okuno, M. Onishi, "Broadband wavelength conversion over 193-nm by HNL-DSF improving higher-order dispersion performance," Eur. Conf. Optical Communications (ECOC) (2005) Paper Th 4.4.4.
  34. I. Shake, H. Takara, S. Kawanishi, "Simple Q factor monitoring for BER estimation using opened eye diagrams captured by high-speed asynchronous electrooptical sampling," IEEE Photon. Technol. Lett. 15, 620-620 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited