OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 4 — Feb. 15, 2009
  • pp: 426–435

Experimental Study on the Role of Chromatic Dispersion in Continuous-Wave Supercontinuum Generation

Laura Abrardi, Sonia Martín-López, Ana Carrasco-Sanz, Félix Rodríguez-Barrios, Pedro Corredera, Maria Luisa Hernanz, and Miguel González-Herráez

Journal of Lightwave Technology, Vol. 27, Issue 4, pp. 426-435 (2009)


View Full Text Article

Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The influence of chromatic dispersion on continuous-wave (CW)-pumped supercontinuum (SC) generation in kilometer-long standard fibers is experimentally investigated. We perform our study by means of a tunable, high-power fiber ring laser pumping a dispersion-shifted fiber in the wavelength range of small and medium anomalous dispersion. Our results show that, at low input powers, chromatic dispersion plays a dominant role on nonlinear pump spectral broadening, giving rise to a broader spectrum when pumping just above the zero-dispersion wavelength of the fiber. At higher input powers, however, the width of the generated SC spectrum is mostly due to the Raman effect, hence more independent of the value of the chromatic dispersion coefficient. We show that, in this case, the optimum pumping wavelengths for SC generation are not so close to the zero-dispersion wavelength of the fiber as in the previous case. In these conditions, as the chromatic dispersion grows, we can obtain square-shaped and high-power density spectra, which seem extremely promising for applications in optical coherence tomography.

© 2009 IEEE

Citation
Laura Abrardi, Sonia Martín-López, Ana Carrasco-Sanz, Félix Rodríguez-Barrios, Pedro Corredera, Maria Luisa Hernanz, and Miguel González-Herráez, "Experimental Study on the Role of Chromatic Dispersion in Continuous-Wave Supercontinuum Generation," J. Lightwave Technol. 27, 426-435 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-4-426


Sort:  Year  |  Journal  |  Reset

References

  1. J. G. Fujimoto, "Optical coherence tomography for ultra high resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
  2. P. L. Hsiung, Y. Chen, T. H. Ko, J. G. Fujimoto, C. J. S. de Matos, S. V. Popov, J. R. Taylor, V. P. Gapontsev, "Optical coherence tomography using a continuous-wave, high power, Raman continuum light source," Opt. Express 12, 5287-5295 (2004).
  3. C. J. S. D. Matos, S. V. Popov, J. R. Taylor, "Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers around 1300 nm," Appl. Phys. Lett. 85, 2706-2708 (2004).
  4. S. Martin-Lopez, M. Gonzalez-Herraez, A. Carrasco-Sanz, F. Vanholsbeeck, S. Coen, H. Fernandez, J. Solis, P. Corredera, M. L. Hernanz, "Broadband spectrally flat and high power density light source for fibre sensing purposes," Meas. Sci. Technol. 17, 1014-1019 (2006).
  5. M. Prabhu, A. Taniguhci, S. Hirose, J. Lu, M. Musha, A. Shirakawa, K. Ueda, "Supercontinuum generation using Raman fiber laser," Appl. Phys. B—Lasers O. 77, 205-210 (2003).
  6. M. Gonzalez-Herraez, S. Martin-Lopez, P. Corredera, M. L. Hernanz, P. R. Horche, "Supercontinuum generation using a continuous-wave Raman fiber laser," Opt. Commun. 226, 323-328 (2003).
  7. P. A. Champert, V. Couderc, A. Barthelemy, "1.5–2.0 $\mu{\hbox {m}}$ multiwatt continuum generation in dispersion-shifted fiber by use of high-power continuous-wave fiber source," IEEE Photon. Technol. Lett. 16, 2445-2447 (2004).
  8. A. K. Abeeluck, C. Headley, C. G. Jorgensen, "High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser," Opt. Lett. 29, 2163-2165 (2004).
  9. T. Sylvestre, A. Vedadi, H. Maillotte, F. Vanholsbeeck, S. Coen, "Supercontinuum generation using continuous-wave multiwavelength pumping and dispersion management," Opt. Lett. 31, 2036-2038 (2006).
  10. L. Abrardi, S. Martin-Lopez, A. Carrasco-Sanz, P. Corredera, M. L. Hernanz, M. Gonzalez-Herraez, "Optimized all-fiber supercontinuum source at 1.3 $\mu{\hbox {m}}$ generated in a stepwise dispersion-decreasing-fiber arrangement," IEEE Photon. Technol. Lett. 25, 2098-2012 (2007).
  11. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004).
  12. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
  13. S. M. Kobtsev, S. V. Smirnov, "Modelling of high-power supercontinuum generation in highly nonlinear dispersion shifted fibers at CW pump," Opt. Express 13, 6912-6918 (2005).
  14. M. H. Frosz, O. Bang, A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006).
  15. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Amer. B 6, 1149-1158 (1989).
  16. N. Korneev, E. A. Kuzin, B. Ibarra-Escamilla, M. Bello-Jim´nez, A. Flores-Rosas, "Initial development of supercontinuum in fibers with anomalous dispersion pumped by nanosecond-long pulses," Opt. Express 16, 2636-2645 (2008).
  17. S. Martin-Lopez, M. Gonzalez-Herraez, P. Corredera, M. L. Hernanz, A. Carrasco, "Experimental investigation of the effect of pump incoherence on nonlinear pump spectral broadening and continuous-wave supercontinuum generation," Opt. Lett. 31, 3477-3479 (2006).
  18. A. Hasegawa, "Generation of a train of soliton pulses by induced modulation instability in optical fibers," Opt. Lett. 9, 288-290 (1984).
  19. F. M. Mitschke, L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
  20. J. P. Gordon, "Theory of soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
  21. J. N. Kutz, C. Lynga, B. J. Eggleton, "Enhanced supercontinuum generation through dispersion-management," Opt. Express 13, 3989-3998 (2005).
  22. B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, "Phase-shift technique for measurement of chromatic dispersion in optical fibers using LEDs," IEEE J. Quantum Electron. 18, 1509-1515 (1982).
  23. M. Artiglia, E. Ciaramella, B. Sordo, "Using modulation instability to determine Kerr coefficient in optical fibers," Electron. Lett. 31, 1012-1013 (1995).
  24. C. Mazzali, D. F. Grosz, H. L. Fragnito, "Simple method for measuring dispersion and nonlinear coefficient near the zero-dispersion wavelength of optical fibers," IEEE Photon. Technol. Lett. 11, 251-253 (1999).
  25. J. Fatome, S. Pitois, G. Millot, "Measurement of nonlinear and chromatic dispersion parameters of optical fibers using modulation instability," Opt. Fiber Technol. 12, 243-250 (2006).
  26. A. Carrasco-Sanz, F. Rodriguez-Barrios, P. Corredera, S. Martin-Lopez, M. Gonzalez-Herraez, M. L. Hernanz, "An integrating sphere radiometer as a solution for high power calibrations in fiber optics," Metrologia 43, 145-150 (2006).
  27. N. Akhmediev, M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  29. K. Tai, A. Tomita, J. L. Jewell, A. Hasegawa, "Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulation instability," Appl. Phys. Lett. 49, 236-238 (1986).
  30. Y. Kodama, A. Hasegawa, "Nonlinear pulse propagation in a monomode dielectric guide," IEEE J. Quantum Electron. 23, 510-524 (1987).
  31. A. V. Husakou, J. Hermann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic crystal fibers," J. Opt. Soc. Amer. B 19, 2171-2182 (2002).
  32. J. Hermann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russel, G. Korn, "Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers," Phys. Rev. Lett. 88, 173901.1-173901.4 (2002).
  33. G. Genty, M. Lehtonen, H. L. M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004).
  34. M. H. Frosz, P. Falk, O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005).
  35. K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, J. J. Larsen, "Initial steps of supercontinuum generation in photonic crystal fibers," J. Opt. Soc. Amer. B 20, 1887-1893 (2003).
  36. I. Cristiani, R. Tediosi, L. Tartara, V. Degiorgio, "Dispersive waves generation by solitons in microstructured optical fibers," Opt. Express 12, 124-135 (2004).
  37. P. K. A. Wai, H. H. Chen, Y. C. Lee, "Radiation by solitons at the zero group-dispersion wavelength of single-mode optical fibers," Phys. Rev. Lett. 41, 426-439 (1990).
  38. R. Stolen, E. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett. 22, 276-278 (1973).
  39. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, E. M. Dianov, "Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers," J. Opt. Soc. Amer. B 8, 1626-1632 (1991).
  40. D. R. Solli, C. Ropers, P. Koonath, B. jalali, "Optical rogue waves," Nature 450, 1054-1057 (2008).
  41. J. M. Dudley, G. Genty, B. J. Eggleton, "Harnessing and control of optical rogue waves in supercontinuum generation," Opt. Express 16, 3644-3651 (2008).
  42. J. M. Dudley, G. Genty, S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
  43. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer, 2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited