OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 27, Iss. 4 — Feb. 15, 2009
  • pp: 440–448

A Hybrid Electrooptic Microring Resonator-Based $1 \times 4\times 1$ ROADM for Wafer Scale Optical Interconnects

Jocelyn Takayesu, Michael Hochberg, Tom Baehr-Jones, Eric Chan, Guangxi Wang, Philip Sullivan, Yi Liao, Josh Davies, Larry Dalton, Axel Scherer, and William Krug

Journal of Lightwave Technology, Vol. 27, Issue 4, pp. 440-448 (2009)

View Full Text Article

Acrobat PDF (989 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Pairing high-quality factor $(Q)$ silicon-on-insulator microring resonators with rapidly tunable organic electrooptic claddings has allowed the first demonstration of a silicon-organic hybrid electrooptic reconfigurable optical add/drop multiplexer (ROADM). A coplanar electrode geometry provides up to 0.36 GHz/V of electrooptic voltage tuning for each channel, corresponding to an electrooptic coefficient of $r_{33}=64 \hbox{pm/V}$ at wavelengths around 1550 nm. Individual ring resonator devices have 40-$\mu{\hbox {m}}$ ring radii, 2.7-nm free spectral range, and tuning ranges of 180 GHz. The $1\times 4\times 1$ ROADM has a footprint of less than 1 ${\hbox {mm}}^{2}$ and has been shown to reconfigure in less than a microsecond.

© 2009 IEEE

Jocelyn Takayesu, Michael Hochberg, Tom Baehr-Jones, Eric Chan, Guangxi Wang, Philip Sullivan, Yi Liao, Josh Davies, Larry Dalton, Axel Scherer, and William Krug, "A Hybrid Electrooptic Microring Resonator-Based $1 \times 4\times 1$ ROADM for Wafer Scale Optical Interconnects," J. Lightwave Technol. 27, 440-448 (2009)

Sort:  Year  |  Journal  |  Reset


  1. C. Vazquez, S. Vargas, J. Manuel, S. Pena, P. Corredera, "Tunable optical filters using compound ring resonators for DWDM," IEEE Photon. Technol. Lett. 15, 1085-1087 (2003).
  2. A. F. J. Levi, "Optical interconnects in systems," Proc. IEEE 88, 750-757 (2000).
  3. Q. Xu, S. Manipatriuni, B. Schmidt, J. Shakya, M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Exp. 15, 430-436 (2007).
  4. Y. Shi, "Micromachined wideband lithium-niobate electrooptic modulators," IEEE Trans. Microw. Theory Tech. 54, 810-815 (2006).
  5. E. Klein, D. Geuzebroek, H. Kelderman, G. Sengo, N. Baker, A. Dreissen, "Reconfigurable optical add-drop multiplexer using microring resonators," IEEE Photon. Technol. Lett. 11, 2358-2360 (2005).
  6. L. R. Dalton, "Organic electrooptic materials," Pure Appl. Chem. 76, 1421-1433 (2004).
  7. M. R. Fetterman, J. A. Grata, R. Dinu, M. Koenig, A. D. Visnansky, W. L. Kiser, Jr."Electro-optic polymer modulators as passive mm wave detectors," Proc. SPIE 6472, 1-13 (2007).
  8. M. Lee, H. E. Katz, C. Erben, D. M. Hill, P. Gopalan, J. D. Heber, D. J. McGee, "Broadband modulation of light using an electo-optic polymer," Science 298, 1401-1403 (2002).
  9. T.-D. Kim, J.-W. Kang, J. Luo, S.-H. Jang, J.-W. Ka, N. Tucker, J. B. Benedict, L. R. Dalton, T. Gray, R. M. Overney, D. H. Park, W. N. Herman, A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from supramolecular self-assembled molecular glasses," J. Amer. Chem. Soc. 129, 488-489 (2007).
  10. L. R. Dalton, A. K. Jen, P. A. Sullivan, B. E. Eichinger, B. H. Robinson, A. M. Chen, "Theoretically-inspired rational design of electro-optic materials," Nonlinear Opt. Quantum Opt. 35, 1-19 (2006).
  11. C. Zhang, L. R. Dalton, M. Oh, H. Zhang, W. H. Steier, "Low ${\rm V}\pi$ electrooptic modulators from CLD-1: Chromophore design and synthesis, material processing, and characterization," Chem. Mater. 13, 3043-3050 (2001).
  12. L. Dalton, (2007)Revisiting Organic Optical Nonlinearity Leads to a New Class of Materials SPIE Newsroom http://spie.org/x17559.xml.
  13. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  14. L. Dalton, "Nonlinear optical polymeric materials: From chromophore design to commercial applications ," Adv. Polym. Sci. 158, 1-86 (2002).
  15. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  16. Y. Liao, C. Anderson, P. Sullivan, A. Akelaitis, B. Robinson, L. Dalton, "Electro-optical properties of polymers containing alternating nonlinear optical chromophores and bulky spacers," Chem. Mater. 18, 1062-1067 (2006).
  17. T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A. K.-Y. Jen, A. Scherer, "Optical modulation and detection in slotted silicon waveguides," Opt. Express 13, 5216-5226 (2005).
  18. P. A. Sullivan, H. Rommel, Y. Liao, B. C. Olbricht, A. J. P. Akelaitis, K. A. Firestone, J.-W. Kang, J. Luo, J. A. Davies, D. H. Choi, B. E. Eichinger, P. J. Reid, A. Chen, A. K.-Y. Jen, B. H. Robinson, L. R. Dalton, "Theory-guided design and synthesis of multichromophore dendrimers: An analysis of the electro-optic effect," J. Amer. Chem. Soc. 129, 7523-7530 (2007).
  19. P. A. Sullivan, B. C. Olbright, A. Akelaitis, A. Mistry, Y. Liao, L. Dalton, "Tri-component Diels-Alder polymerized dendrimer glass exhibiting large, thermally stable, electro-optic activity," J. Mater. Chem. 17, 2899-2903 (2007).
  20. L. R. Dalton, P. A. Sullivan, D. H. Bale, B. C. Olbricht, "Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials," Solid-State Electron. 51, 1263-1277 (2007).
  21. L. Dalton, "Integrated optics/electronics using electro-optic polymers," Mater. Res. Soc. Symp. Proc. 817, 181-193 (2004).
  22. T. Baehr-Jones, M. Hochberg, C. Walker, A. Scherer, "High-Q ring resonators in thin silicon-on-insulator," Appl. Phys. Lett. 85, 3346-3347 (2004).
  23. P. Rabiei, W. Steier, C. Zhang, L. Dalton, "Polymer micro-ring filters and modulators," J. Lightw. Technol. 20, 1968-1975 (2002).
  24. A. Taflove, Computational Electrodynamics (Artech House, 1995).
  25. T. Baehr-Jones, M. Hochberg, C. Walker, E. Chan, D. Koshinz, W. Krug, A. Scherer, "Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators," J. Lightw. Technol. 23, 4215-4221 (2005).
  26. M. Borselli, T. Johnson, O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: Theory and experiment ," Opt. Exp. 13, 1515-1530 (2005).
  27. G. Roelkens, D. Van Thourhout, R. Baets, "High efficiency grating coupler between silicon on insulator waveguides and perfectly vertical optical fibers," Opt. Exp. 32, 1495-1497 (2007).
  28. C. Gunn, "CMOS photonics for high-speed interconnects," IEEE Micro. 26, 58-66 (2006).
  29. N. P. Bhatambrekar, L. Dalton, J. Luo, A. K.-Y. Jen, A. Chen, "Third-order nonlinearity contribution to electro-optic activity in polymer materials in a constant bias field," Appl. Phys. Lett 88, 1-3 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited