OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 27, Iss. 8 — Apr. 15, 2009
  • pp: 989–999

Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for $M$-QAM Constellations

Timo Pfau, Sebastian Hoffmann, and Reinhold Noé

Journal of Lightwave Technology, Vol. 27, Issue 8, pp. 989-999 (2009)


View Full Text Article

Acrobat PDF (2025 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This paper presents a novel digital feedforward carrier recovery algorithm for arbitrary $M$-ary quadrature amplitude modulation ($M$-QAM) constellations in an intradyne coherent optical receiver. The approach does not contain any feedback loop and is therefore highly tolerant against laser phase noise. This is crucial, especially for higher order QAM constellations, which inherently have a smaller phase noise tolerance due to the lower spacing between adjacent constellation points. In addition to the mathematical description of the proposed carrier recovery algorithm also a possible hardware-efficient implementation in a parallelized system is presented and the performance of the algorithm is evaluated by Monte Carlo simulations for square 4-QAM (QPSK), 16-QAM, 64-QAM, and 256-QAM. For the simulations ASE noise and laser phase noise are considered as well as analog-to-digital converter (ADC) and internal resolution effects. For a 1 dB penalty at ${\rm BER} = 10^{- 3}$, linewidth times symbol duration products of $4.1\times 10^{- 4}$ (4-QAM), $1.4\times 10^{- 4}$ (16-QAM), $4.0\times 10^{- 5}$ (64-QAM) and $8.0\times 10^{- 6}$ (256-QAM) are tolerable.

© 2009 IEEE

Citation
Timo Pfau, Sebastian Hoffmann, and Reinhold Noé, "Hardware-Efficient Coherent Digital Receiver Concept With Feedforward Carrier Recovery for $M$-QAM Constellations," J. Lightwave Technol. 27, 989-999 (2009)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-27-8-989


Sort:  Year  |  Journal  |  Reset

References

  1. E. Ip, A. Lau, D. Barros, J. Kahn, "Coherent detection in optical fiber systems," Opt. Exp. 16, 753-791 (2008).
  2. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J. Dupuy, S. Bigo, "Transmission of 16.4 Tbit/s capacity over 2 550 km using PDM QPSK modulation format and coherent receiver," Proc. OFC/NFOEC'08 (2008).
  3. T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noé, "Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gbit/s," IEEE Photon. Technol. Lett. 19, 1988-1990 (2007).
  4. A. Leven, N. Kaneda, Y. Chen, "Real-time CMA-based 10 Gb/s polarization demultiplexing coherent receiver implemented in an FPGA," Proc. OFC/NFOEC'08 (2008).
  5. L. Nelson, S. Woodward, M. Feuer, X. Zhou, P. Magill, S. Foo, D. Hanson, D. McGhan, H. Sun, M. Moyer, M. O'Sullivan, "Performance of a 46-Gbps dual-polarization QPSK transceiver in a high-PMD fiber transmission experiment," Proc. OFC/NFOEC'08 (2008).
  6. T. Sakamoto, A. Chiba, T. Kawanishi, "50-Gb/s 16 QAM by a quad-parallel mach-zehnder modulator," Proc. ECOC'07 (2007).
  7. C. Doerr, P. Winzer, L. Zhang, L. Buhl, N. Sauer, "Monolithic InP 16-QAM modulator," Proc. OFC/NFOEC'08 (2008).
  8. H. Goto, K. Kasai, M. Yoshida, M. Nakazawa, "Polarization-multiplexed 1 Gsymbol/s, 128 QAM (14 Gbit/s) coherent optical transmission over 160 km using a 1.4 GHz nyquist filter," Proc. OFC/NFOEC'08 (2008).
  9. A. Tarighat, R. Hsu, A. Sayed, B. Jalali, "Digital adaptive phase noise reduction in coherent optical links," J. Lightw. Technol. 24, 1269-1276 (2006).
  10. E. Ip, J. Kahn, "Feedforward carrier recovery for coherent optical communication," J. Lightw. Technol. 25, 2675-2692 (2007).
  11. H. Louchet, K. Kuzmin, A. Richter, "Improved DSP algorithms for coherent 16-QAM transmission," Proc. ECOC'08 (2008).
  12. M. Seimetz, "Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation," Proc. OFC/NFOEC'08 (2008).
  13. U.-V. Koc, "PLL-free quadrature-amplitude modulation in coherent optical communication," Proc. ISCAS'07 (2007) pp. 2299-2302.
  14. F. Munier, E. Alpman, T. Eriksson, A. Svensson, H. Zirath, "Estimation of phase noise for QPSK modulation over AWGN channels," Proc. GigaHertz 2003 Symp. (2003).
  15. E. Cacciamani, C. Wolejsza, "Phase-ambiguity resolution in a four-phase PSK communications system," IEEE Trans. Commun. Techn. 19, 1200-1210 (1971).
  16. W. Weber, "Differential encoding for multiple amplitude and phase shift keying systems," IEEE Trans. Commun. 26, 385-391 (1978).
  17. R. Noé, "PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing," IEEE Photon. Technol. Lett. 17, 887-889 (2005).
  18. W. Webb, L. Hanzo, Modern Quadrature Amplitude Modulation (Pentech Press, 1994).
  19. R. Noé, "Phase noise tolerant synchronous QPSK/BPSK baseband-type intradyne receiver concept with feedforward carrier recovery," J. Lightw. Technol. 23, 802-808 (2005).
  20. K. Kikuchi, "Polarization-demultiplexing algorithm in the digital coherent receiver," Proc. SUM'08 (2008).
  21. J. Volder, "The CORDIC trigonometric computing technique," IRE Trans. on Electron. Comp. EC-8, 330-334 (1959).
  22. J. Walther, "A unified algorithm for elementary functions," Proc. Spring Joint Comp. Conf. (1971) pp. 379-385.
  23. S. Tretter, "Estimating the frequency of a noisy sinusoid by linear regression," IEEE Trans. Inf. Theory 31, 832-835 (1985).
  24. H. Cramér, Mathematical Methods of Statistics (Princeton University Press, 1999).
  25. Sabeus Precision Advantage™ AG-1 Source Laser Datasheet (Sabeus Inc., 2006).
  26. K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, A. Montijo, "A 20 GS/s 8b ADC with a 1 MB memory in 0.18 $\mu$m CMOS," Proc. ISSCC'03 (2003).
  27. H. Nosaka, M. Nakamura, K. Sano, M. Ida, K. Kurishima, T. Shibata, M. Tokumitsu, M. Muraguchi, "A 24-Gsps 3-bit nyquist ADC using InP HBTs for DSP-based electronic dispersion compensation," IEICE Trans. Electron. E88-C, 1125-1232 (2005).
  28. O. Adamczyk, R. Noé, "13 Gsamples/s 5-bit analogue-to-digital converter for coherent optical QPSK receiver," Electron. Lett. 44, 895-896 (2008).
  29. H. Sun, K. Wu, K. Roberts, "Real-time measurements of a 40 Gb/s coherent system," Opt. Exp. 16, 873-879 (2008).
  30. F. Boré, S. Bruel, M. Wingender, "A 10-bit 2.2 Gsps ADC operating over first and second nyquist zones," Atmel Appl. 43-48 Winter 2006.
  31. B. Chan, B. Oyama, C. Monier, A. Gutierrez, "An ultra-wideband 7-bit 5 Gsps ADC implemented in submicron InP HBT technology," Proc. CSIC'07 (2007).
  32. T. Ellermeyer, J. Mullrich, J. Rupeter, H. Langenhagen, A. Bielik, "DA and AD converters for 25 GS/s and above," Proc. SUM'08 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited