OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 10 — Mar. 15, 2010
  • pp: 1485–1495

Dense SS-WDM Over Legacy PONs: Smooth Upgrade of Existing FTTH Networks

Ziad A. El-Sahn, Walid Mathlouthi, Habib Fathallah, Sophie LaRochelle, and Leslie A. Rusch

Journal of Lightwave Technology, Vol. 28, Issue 10, pp. 1485-1495 (2010)


View Full Text Article

Acrobat PDF (1186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose a hybrid passive optical network (PON) architecture supporting time-division multiplexing (TDM) and dense spectrum-sliced wavelength-division multiplexing (SS-WDM) over the legacy PON infrastructure. We use a fiber Bragg grating (FBG)-based self-seeded reflective semiconductor optical amplifier (RSOA) transmitter in conjunction with a recently proposed balanced receiver (BR); identical transceiver pairs are placed at the central office and customer side. Self-seeded RSOAs obviate the need for centralized sources, providing a high power, directly modulated source. Intensity noise mitigation of this thermal source is investigated by operating the RSOA in saturation and employing the recently proposed BR. We study the optimal reflectivity for seeding that balances signal power and noise cleaning to achieve the best bit error rate (BER) possible; channel widths are comparable with dense WDM when using coherent sources.We experimentally demonstrate a symmetrical 1.25 Gb/s dense SS-WDM transmission over the legacy PON infrastructure using our optimized self-seeded RSOA transmitter and the BR. Using a reflective $(18 \pm 2\hbox{\%})$ FBG for self-seeding, we achieve up to 4.5 dBm of output power within a 25 GHz channel. Error free transmission $({\rm BER} < 10^{-10})$ is achieved over a 20 km feeder. We investigate the possibility of colorless ONU operation. The power budget allows 32 users (64 users with reasonable OLT amplification) to be supported over the existing PON infrastructure. Simulations show capacity increases to 128 users when a Reed–Solomon RS(255, 239) forward error correcting code is used.

© 2010 IEEE

Citation
Ziad A. El-Sahn, Walid Mathlouthi, Habib Fathallah, Sophie LaRochelle, and Leslie A. Rusch, "Dense SS-WDM Over Legacy PONs: Smooth Upgrade of Existing FTTH Networks," J. Lightwave Technol. 28, 1485-1495 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-10-1485


Sort:  Year  |  Journal  |  Reset

References

  1. S. Kaneko, J.-I. Kani, K. Iwatsuki, A. Ohki, M. Sugo, S. Kamei, "Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction," J. Lightw. Technol. 24, 1295-1301 (2006).
  2. A. Girard, FTTx PON Technology and Testing Electro-Optical Engineering Inc.Quebec CityCanada (2005) ISBN 1-55342-006-3.
  3. P. W. Shumate, "Fiber-to-the-home: 1977-2007," J. Lightw. Technol. 26, 1093-1103 (2008).
  4. C.-H. Lee, W. V. Sorin, B. Y. Kim, "Fiber to the home using a PON infrastructure," J. Lightw. Technol. 24, 4568-4583 (2006).
  5. K. Cho, K. Fukuda, H. Esaki, A. Kato, "The impact and implication of the growth in residential user-to-user traffic," Proc. ACM/SIGCOMM (2006) pp. 207-218.
  6. M. P. McGarry, M. Reisslein, M. Maier, "WDM ethernet passive optical networks," IEEE Commun. Mag. 44, 15-22 (2006).
  7. A. J. Keating, D. D. Sampson, "Reduction of excess intensity noise in spectrum-sliced incoherent light for WDM applications," J. Lightw. Technol. 15, 53-61 (1999).
  8. C. Arellano, C. Bock, J. Prat, K.-D. Langer, "RSOA-based optical network units for WDM-PON," Proc. OFC (2006).
  9. S.-B. Park, D. K. Jung, D. J. Shin, H. S. Shin, I. K. Yun, J. S. Lee, Y. K. Oh, Y. J. Oh, "Colorless operation of WDM-PON employing uncooled spectrum-sliced reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 19, 248-250 (2007).
  10. E. Wong, K. L. Lee, T. B. Anderson, "Low-cost WDM passive optical network with directly-modulated self-seeding reflective SOA," IEEE Electron. Lett. 42, 299-301 (2006).
  11. E. Wong, K. L. Lee, T. B. Anderson, "Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks," J. Lightw. Technol. 25, 67-74 (2007).
  12. H.-C. Kwon, Y.-Y. Won, S.-K. Han, "A self-seeded reflective SOA-based optical network unit for optical beat interference robust WDM/SCM-PON link," IEEE Photon. Technol. Lett. 18, 1852-1854 (2006).
  13. N. Nadarajah, K. L. Lee, A. Nirmalathas, "Upstream access and local area networking in passive optical networks using self-seeded reflective semiconductor optical amplifier," IEEE Photon. Technol. Lett. 19, 1559-1561 (2007).
  14. A. Ghazisaeidi, F. Vacondio, A. Bononi, L. A. Rusch, "SOA intensity noise suppression in spectrum sliced systems: A multicanonical Monte Carlo simulator of extremely low BER," J. Lightw. Technol. 27, 2667-2677 (2009).
  15. W. Mathlouthi, F. Vacondio, L. A. Rusch, "High-bit-rate dense SS-WDM PON using SOA-based noise reduction with a novel balanced detection," J. Lightw. Technol. 27, 5045-5055 (2009).
  16. W. Mathlouthi, P. Lemieux, L. A. Rusch, "Optimal SOA-based noise reduction schemes for incoherent spectrum-sliced PONs," Proc. ECOC (2006).
  17. F. Payoux, P. Chanclou, T. Soret, N. Genay, R. Brenot, "Demonstration of a RSOA-based wavelength remodulation scheme in 1.25 Gbit/s bidirectional hybrid WDM-TDM PON," Proc. OFC (2006).
  18. H. Takesue, T. Sugie, "Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources," J. Lightw. Technol. 21, 2546-2556 (2003).
  19. J. M. Oh, S. G. Koo, D. Lee, S.-J. Park, "Enhancement of the performance of a reflective SOA-based hybrid WDM/TDM PON system with a remotely pumped erbium-doped fiber amplifier," J. Lightw. Technol. 26, 144-149 (2008).
  20. A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, D. J. Richardson, "Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems," J. Lightw. Technol. 23, 2399-2409 (2005).
  21. M. D. Vaughn, D. Kozischek, D. Meis, A. Bosckovic, R. E. Wagner, "Value of reach-and-split ratio increase in FTTH access networks," J. Lightw. Technol. 22, 2617-2622 (2004).
  22. J.-M. Kang, S.-K. Han, "A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier," IEEE Photon. Technol. Lett. 18, 502-504 (2006).
  23. G. W. Yoffe, P. A. Krug, F. Ouellette, D. A. Thorncraft, "Passive temperature-compensating package for optical fiber gratings," J. Appl. Opt. 34, 6859-6861 (1995).
  24. B. Sklar, Digital Communications: Fundamentals and Applications (Prentice Hall, 2001).
  25. A. B. Carlson, P. B. Crilly, J. C. Rutledge, Communication Systems: An Introduction to Signals and Noise in Electrical Communication (McGraw Hill, 2001).
  26. M. R. Mokhtar, C. S. Goh, S. A. Butler, S. Y. Set, K. Kikuchi, D. J. Richardson, M. Ibsen, "Fibre Bragg grating compression-tuned over 110 nm," IEEE Electron. Lett. 39, 509-510 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited