OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 14 — Jul. 15, 2010
  • pp: 2030–2036

Flat Surface Plasmon Polariton Bands in Bragg Grating Waveguide for Slow Light

Jing Zhang, Likang Cai, Wenli Bai, and Guofeng Song

Journal of Lightwave Technology, Vol. 28, Issue 14, pp. 2030-2036 (2010)

View Full Text Article

Acrobat PDF (916 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


The formations of the surface plasmon polariton (SPP) bands in metal/air/metal (MAM) sub-wavelength plasmonic grating waveguide (PGW) are proposed. The band gaps originating from the highly localized resonances inside the grooves can be simply estimated from the round trip phase condition. Due to the overlap of the localized SPPs between the neighboring grooves, a Bloch mode forms in the bandgap and can be engineered to build a very flat dispersion for slow light. A chirped PGW with groove depth varying is also demonstrated to trap light, which is validated by finite-difference time-domain (FDTD) simulations with both continuous and pulse excitations.

© 2010 IEEE

Jing Zhang, Likang Cai, Wenli Bai, and Guofeng Song, "Flat Surface Plasmon Polariton Bands in Bragg Grating Waveguide for Slow Light," J. Lightwave Technol. 28, 2030-2036 (2010)

Sort:  Year  |  Journal  |  Reset


  1. T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).
  2. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999).
  3. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, "Tunable all-optical delays via Brillouin slow light in an optical fiber," Phys. Rev. Lett. 94, 153902- (2005).
  4. C. Liu, Z. Dutton, C. H. Behroozi, L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
  5. T. F. Krauss, "Why do we need slow light?," Nat. Photon. 2, 448-450 (2008).
  6. K. L. Tsakmakidis, A. D. Boardman, O. Hess, "Trapped rainbow' storage of light in metamaterials," Nature 450, 397-401 (2007).
  7. T. BaBa, "Slow light in photonic crystals," Nat. Photon. 2, 465-473 (2008).
  8. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001).
  9. D. Mori, T. Baba, "Dispersion-controlled optical group delay device by chirped photonic crystal waveguides," Appl. Phys. Lett. 85, 1101-1103 (2004).
  10. M. Sandtke, L. Kuipers, "Slow guided surface plasmons at telecom frequencies," Nat. Photon. 1, 573-576 (2007).
  11. Q. Gan, Z. Fu, Y. J. Ding, F. J. Bartoli, "Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures," Phys. Rev. Lett. 100, 256803- (2008).
  12. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  13. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Exp. 13, 4674-4682 (2005).
  14. W. L. Barnes, A. Dereux, T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003).
  15. J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, "Mimicking surface plasmons with structured surfaces," Science 305, 847-848 (2004).
  16. M. Qiu, "Photonic band structures for surface waves on structured metal surfaces," Opt. Exp. 13, 7583-7588 (2005).
  17. F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry, "Surface with holes in them: New plasmonic metamaterials," J. Opt. A: Pure Appl. Opt. 7, 97-101 (2005).
  18. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
  19. I. R. Hooper, J. R. Sambles, "Dispersion of surface plasmon polaritons on short-pitch metal gratings," Phys. Rev. B 65, 165432 (2002).
  20. J. Zhang, L. Cai, W. Bai, Y. Xu, G. Song, "Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide," J. Appl. Phys. 106, 103715 (2009).
  21. W. C. Tan, T. W. Preist, J. R. Sambles, N. P. Wanstall, "Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings," Phys. Rev. B 59, 12661-1266 (1999).
  22. A. Karalis, J. D. Joannopoulos, M. Soljacic, "Plasmonic-dielectric systems for high-order dispersionless slow or stopped subwavelength light," Phys. Rev. Lett. 103, 43906- (2009).
  23. K. C. Huang, E. Lidorikis, X. Jiang, J. D. Joannopoulos, K. A. Nelson, "Nature of lossy Bloch states in polaritonic photonic crystals," Phys. Rev. B 69, 195111- (2004).
  24. A. Archambault, T. V. Teperik, F. Marquier, J. J. Greffet, "Surface plasmon Fourier optics," Phys. Rev. B 79, 195414- (2009).
  25. A. Tip, "Linear dispersive dielectrics as limits of Drude-Lorentz systems," Phys. Rev. E 69, 016610- (2004).
  26. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985) pp. 355-357.
  27. H. T. Miyazaki, Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401- (2006).
  28. B. Prade, J. Y. Vinet, A. Mysyrowicz, "Guided optical waves in planar heterostructures with negative dielectric constant," Phys. Rev. B 44, 13556-13572 (1991).
  29. E. Feigenbaum, M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightw. Technol. 25, 2547-2562 (2007).
  30. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, "Plasmonic Fabry-Pérot nanocavity," Nano. Lett. 9, 3489-3493 (2009).
  31. M. Notomi, E. Kuramochi, T. Tanabe, "Large-scale arrays of ultrahigh-Q coupled nanocavities," Nat. Photon. 2, 741-747 (2008).
  32. J. A. Dionne, E. Verhagen, A. Polman, H. A. Atwater, "Are negative index materials achievable with surface plasmon waveguides? A case study of three plasmonic geometries," Opt. Exp. 16, 19001-19017 (2008).
  33. H. J. Lezec, J. A. Dionne, H. A. Atwater, "Negative refraction at visible frequencies," Science 316, 430-432 (2007).
  34. A. Kocabas, S. S. Senlik, A. Aydinli, "Slowing down surface plasmons on a moiré surface," Phys. Rev. Lett. 102, 063901 (2009).
  35. M. Sandtke, L. Kuipers, "Spatial distribution and near-field coupling of surface plasmon polariton bloch modes," Phys. Rev. B 77, 235439 (2008).
  36. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photon. 1, 49-52 (2007).
  37. F. N. Xia, L. Sekaric, Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nat. Photon. 1, 65-71 (2007).
  38. J. G. Pedersen, S. Xiao, N. A. Mortensen, "Limits of slow light in phontonic crystals," Phys. Rev. B 78, 153101 (2008).
  39. Q. Gan, Y. J. Ding, F. J. Bartoli, "Rainbow trapping and releasing at telecommunication wavelengths," Phys. Rev. Lett. 102, 056801 (2009).
  40. T. Baba, D. Mori, K. Inoshita, Y. Kuroki, "Light localization in line defect photonic crystal waveguides," IEEE. J. Sel. Top. Quantum Electron. 10, 484-491 (2004).
  41. J. Grandidier, G. C. D. Francs, S. Massenot, A. Bouhelier, L. Markey, J. C. Weeber, C. Finot, A. Dereux, "Gain-assisted propagation in a plasmonic waveguide at telecom. wavelength," Nano. Lett. 9, 2935-2939 (2009).
  42. P. Ginzburg, D. Arbel, M. Orenstein, "Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing," Opt. Lett. 31, 3288-3290 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited