OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 18 — Sep. 15, 2010
  • pp: 2708–2713

Mode Property of Terahertz Polymer Tube

Daru Chen

Journal of Lightwave Technology, Vol. 28, Issue 18, pp. 2708-2713 (2010)

View Full Text Article

Acrobat PDF (629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Mode property of a kind of Terahertz (THz) polymer tubes including a circular polymer tube (CPT) and an elliptical polymer tube (EPT) are investigated in this paper. Low-loss property of the THz polymer tube is achieved due to the ring-structure cross section of the polymer tube where the central air core traps a large part of the mode power of the fundamental guiding mode, where the air is almost lossless for THz wave. Effective indexes, mode profile, single mode property, and relative absorption loss of both the CPT and the EPT are presented. Simulation results show that the CPT with a cross section of a circular ring structure exhibits better loss property than a conventional solid polymer fiber. The EPT with a cross section of an elliptical ring structure can achieve a high birefringence (up to the order of 0.01), which is due to the effect of the continuity of the electric displacement vector in the normal direction of the interfaces between the polymer materials and the air in the cross section.

© 2010 IEEE

Daru Chen, "Mode Property of Terahertz Polymer Tube," J. Lightwave Technol. 28, 2708-2713 (2010)

Sort:  Year  |  Journal  |  Reset


  1. M. V. Exter, Ch. Fattinger, D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989).
  2. B. B. Hu, M. C. Nuss, "Imaging with terahertz wave," Opt. Lett. 20, 1716-1718 (1995).
  3. Q. Wu, C. Zhang, "Free-space electro-optic sampling of terahertz beams," Appl. Phys. Lett. 67, 3523-3535 (1995).
  4. P. H. Siegel, "Terahertz technology," IEEE Trans. Microwave Theory Tech. 50, 910-928 (2002).
  5. B. Ferguson, X.-C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
  6. M. Tonouchi, "Cutting-edge terahertz technology," Nature Photon. 1, 97-105 (2007).
  7. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B Lasers Opt. 68, 1432-0649 (1999).
  8. Q. Chen, Z. Jiang, G. X. Xu, X.-C. Zhang, "Near-field terahertz imaging with a dynamic aperture," Opt. Lett. 25, 1122-1124 (2000).
  9. T. Löffler, T. Bauer, K. J. Siebert, H. G. Roskos, "Terahertz dark-field imaging of biomedical tissue," Opt. Exp. 9, 616-621 (2001).
  10. H. T. Chen, R. Kersting, G. C. Cho, "Terahertz imaging with a nanometer resolution," Appl. Phys. Lett. 83, 3009- (2003).
  11. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, "Non-destructive terahertz imaging of illicit drugs using spectral fingerprints," Opt. Exp. 11, 2549-2554 (2003).
  12. D. Grischkowsky, S. Keiding, M. V. Exter, Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Amer. B 7, 2006-2015 (1990).
  13. G. Winnewisser, "Spectroscopy in the terahertz region," Vib. Spectrosc. 8, 241-253 (1995).
  14. A. Nahata, A. S. Weling, T. F. Heinz, "A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling," Appl. Phys. Lett. 69, 2321-2323 (1996).
  15. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, M. C. Kemp, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 0.2 THz," Chem. Phys. Lett. 320, 42-48 (2000).
  16. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, X.-C. Zhang, "A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy," J. Appl. Phys. 89, 2357-2359 (2001).
  17. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, M. C. Kemp, "Detection and identification of explosive using terahertz pulsed spectroscopic," Appl. Phys. Lett. 86, 241116- (2005).
  18. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, M. C. Nuss, "Gas sensing using terahertz time-domain spectroscopy," Appl. Phys. B Lasers Opt. 67, 1432-0649 (1998).
  19. M. Brucherseifer, M. Nagel, P. H. Bolivar, H. Kurz, A. Bosserhoff, R. Buttner, "Label-free probing of the binding state of DNA by time-domain terahertz sensing," Appl. Phys. Lett. 77, 4049-4051 (2000).
  20. H. Kurt, D. S. Citrin, "Photonic crystals for biochemical sensing in the terahertz region," Appl. Phys. Lett. 87, 041108-041110 (2005).
  21. C. Debus, P. H. Bolivar, "Frequency selective surfaces for high sensitivity terahertz sensing," Appl. Phys. Lett. 91, 184102-184104 (2007).
  22. N. Krumbholz, K. Gerlach, F. Rutz, M. Koch, R. Piesiewicz, T. Kürner, D. Mittleman, "Omnidirectional terahertz mirrors: A key element for future terahertz communication systems," Appl. Phys. Lett. 88, 202905-202907 (2006).
  23. R. Piesiewcz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel, T. Kürner, "Short-range ultra-broadband terahertz communications: Concepts and perspectives," IEEE Antennas Propag. Mag. 49, 24-39 (2007).
  24. L. Möller, J. Federici, A. Sinyukov, C. Xie, H. C. Lim, R. C. Giles, "Data encoding on terahertz signals for communication and sensing," Opt. Lett. 33, 393-395 (2008).
  25. C. Jansen, R. Piesiewicz, D. Mittleman, T. Kürner, M. Koch, "The impact of reflections from stratified buiding materials on the wave propagation in future indoor terahertz communication systems," IEEE Trans. Microw. Theory Techn. 56, 1413-1419 (2008).
  26. K. Kawase, J. Shikata, H. Ito, "Terahertz wave parametric source," J. Phys. D: Appl. Phys. 34, R1-R14 (2001).
  27. R. Mendis, D. Grischkowsky, "Undistorted guided-wave propagation of subpicosecond terahertz pulses," Opt. Lett. 26, 846-848 (2001).
  28. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, G. P. Williams, "High-power terahertz radiation from relativistic electrons," Nature 420, 153-156 (2002).
  29. R. Kohler, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002).
  30. G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, "Terahertz waveguides," J. Opt. Soc. Amer. B 17, 851-862 (2000).
  31. K. Wang, D. M. Mittleman, "Metal wires for terahertz wave guiding," Nature 432, 376-379 (2004).
  32. T. I. Jeon, J. Zhang, D. Grischkowsky, "THz sommerfeld wave propagation on a single metal wire," Appl. Phys. Lett. 86, 161904-161906 (2005).
  33. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
  34. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
  35. M. J. Steel, R. M. Osgood, "Elliptical-hole photonic crystal fibers," Opt. Lett. 26, 229-231 (2001).
  36. J. C. Knight, "Photonic crystal fibers," Nature 424, 847-851 (2003).
  37. D. Chen, L. Shen, "Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss," IEEE Photon. Technol. Lett. 19, 185-187 (2007).
  38. H. Han, H. Park, M. Cho, J. Kim, "Terahertz pulse propagation in a plastic photonic crystal fiber," Appl. Phys. Lett. 80, 2634-2636 (2002).
  39. J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, C. K. Sun, "Terahertz air-core microstructure fiber," Appl. Phys. Lett. 92, 064105-064107 (2008).
  40. S. Atakaramians, S. A. V. , B. M. Fischer, D. Abbott, T. M. Monro, "Porous fibers: A novel approach to low loss THz waveguides," Opt. Express 16, 8845-8854 (2008).
  41. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, M. A. V. Eijkelenborg, "Transmission of terahertz radiation using a microstructured polymer optical fiber," Opt. Lett. 33, 902-904 (2008).
  42. A. Dupuis, J. F. Allard, D. Morris, K. Stoeffler, C. Dubois, M. Skorobogatiy, "Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method," Opt. Exp. 17, 8012-8028 (2009).
  43. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, P. U. Jepsen, "Bendable, low-loss Topas fibers for the terahertz frequency range," Opt. Exp. 17, 8592-8601 (2009).
  44. S. Atakaramians, S. A. V. , H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, T. M. Monro, "THz porous fibers: Design, fabrication and experimental characterization," Opt. Exp. 17, 14053-14062 (2009).
  45. S. Atakaramians, K. Cook, H. Ebendorff-Heidepriem, S. A. V. , J. Canning, D. Abbott, T. M. Monro, "Cleaving of extremely porous polymer fibers," IEEE J. Photon. 1, (2009).
  46. D. Chen, H. Y. Tam, "Highly birefringent terahertz fibers based on super-cell structure," J. Lightw. Technol. 28, 1858-1863 (2010).
  47. H. W. Chen, C. M. Chiu, C. H. Lai, J. L. Kuo, P. J. Chiang, Y. J. Hwang, H. C. Chang, C. K. Sun, "Subwavelength dielectric-fiber-based THz coupler," J. Lightw. Technol. 27, 1489-1495 (2009).
  48. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, C. K. Sun, "Low-loss subwavelength plastic for terahertz waveguiding," Opt. Lett. 31, 308-310 (2006).
  49. J. Y. Lu, C. C. Kuo, C. M. Chiu, H. W. Chen, Y. J. Hwang, C. L. Pan, C. K. Sun, "THz interferometric imaging using subwavelength plastic fiber based THz endoscopes," Opt. Exp. 16, 2494-2501 (2008).
  50. Y. S. Jin, G. J. Kim, S. G. Jeon, "Terahertz dielectric properties of polymer," J. Korean Phys. Soc. 49, 513-517 (2006).
  51. J. Dai, J. Zhang, W. Zhang, D. Grischkowsky, "Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon," J. Opt. Soc. Amer. B 21, 1379-1386 (2004).
  52. S. Atakaramians, S. V. Afshar, B. M. Fischer, D. Abbott, T. M. Monro, "Low loss, low dispersion and highly birefringent terahertz porous fibers," Opt. Commun. 282, 36-38 (2009).
  53. H. Chen, D. Chen, Z. Hong, "Squeezed lattice elliptical-hole terahertz fiber with high birefringence," App. Opt. 48, 3943-3947 (2009).
  54. D. Chen, H. Chen, "A novel low-loss Terahertz waveguide: Polymer tube," Opt. Exp. 18, 3762-3767 (2010).
  55. K. Saitoh, M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
  56. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman Hall, 1983).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited