OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 18 — Sep. 15, 2010
  • pp: 2743–2749

Wideband All-Dielectric Diffraction Grating on Chirped Mirror

Galina A. Kalinchenko and Alexander M. Lerer

Journal of Lightwave Technology, Vol. 28, Issue 18, pp. 2743-2749 (2010)


View Full Text Article

Acrobat PDF (870 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A method of integral equations (IE) is applied to a simulation of diffraction efficiency (DE) of metal-dielectric and all-dielectric diffraction gratings (DG). Two factors narrowing the spectral band of laser pulse reflection into minus first space harmonics (MFSH) are analyzed. It is found that by using a chirped mirror instead of a multilayer all-dielectric one it is possible to make diffracted spectrum 20–30 nm wider.

© 2010 IEEE

Citation
Galina A. Kalinchenko and Alexander M. Lerer, "Wideband All-Dielectric Diffraction Grating on Chirped Mirror," J. Lightwave Technol. 28, 2743-2749 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-18-2743


Sort:  Year  |  Journal  |  Reset

References

  1. A. S. Svakhin, V. A. Sychugov, A. E. Tikhomirov, "Efficient diffraction elements for TE-polarized waves," Sov. Phys. Tech. Phys. 36, 1038-1040 (1991).
  2. J. A. Britten, M. D. Perry, B. W. Shore, R. D. Boyd, G. E. Loomis, R. Chow, "High efficiency dielectric multilayer gratings optimized for anufacturability and laser damage threshold," Proc. SPIE 2714 (1996) pp. 511-520.
  3. B. W. Shore, M. D. Perry, J. A. Britten, R. D. Boyd, M. D. Feit, H. T. Nguyen, R. Chow, G. E. Loomis, L. Li, "Design of high-efficiency dielectric reflection gratings," J. Opt. Soc. Amer. A 14, 1124-1136 (1997).
  4. K. Hehl, J. Bischoff, U. Mohaupt, M. Palme, B. Schnabel, L. Wenke, R. Bödefeld, W. Theobald, E. Welsch, R. Sauerbrey, H. Heyer, "High-efficiency dielectric reflection gratings: Design, fabrication, and analysis," Appl. Opt. 38, 6257-6271 (1999).
  5. A. V. Tishchenko, V. A. Sychugov, "High grating efficiency by energy accumulation in a leaky mode," Opt. Quantum Electron. 32, 1027-1103 (2000).
  6. B. Touzet, J. R. Gilchrist, "Multilayer dielectric gratings enable more powerful high energy lasers," Photon. Spectra 37, 68-75 (2003).
  7. J. Néauport, N. Bonod, "Design, optimization and development of pulse compression gratings for the MPW-HE LIL," J. Phys. IV France 133, 669-672 (2006).
  8. M. Flury, A. V. Tishchenko, O. Parriaux, "The leaky mode resonance condition ensures 100% diffraction efficiency of mirror-based resonant gratings," J. Lightw. Technol. 25, 1870-1878 (2007).
  9. F. Canova, J. P. Chambaret, O. Uteza, P. Delaporte, M. Tondusson, E. Freysz, O. Parriaux, M. Flury, S. Tonchev, N. Lyndin, "${>}97\hbox{\%}$ top-hat efficiency, ${>}4$ J/cm$^2$ damage threshold compression gratings," Proc. Int. Conf. Ultrahigh Intensity Lasers (2006).
  10. F. Canova, O. Uteza, J.-P. Chambaret, M. Flury, S. Tonchev, R. Fechner, O. Parriaux, "High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression," Opt. Exp. 15, 15324-15334 (2007).
  11. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, A. Apolonski, "High-dispersive mirrors for femtosecond lasers," Opt. Exp. 16, 10220-10233 (2008).
  12. http://luxpop.com/#Arb_Reflection_Complex.
  13. A. G. Schuchinsky, D. Zelenchuk, A. M. Lerer, R. Dickie, "Full-wave analysis of layered aperture arrays," IEEE Trans. Antennas Propagat. 54, 490-502 (2006).
  14. C. C. Cutler, "Genesis of the corrugated electromagnetic surface (corrugated waveguide)," Proc. IEEE Antennas Propag. Soc. Int. Symp. (1994) pp. 1456-1459.
  15. R. S. Elliot, "On the theory of corrugated plane surfaces," IRE Trans. Antennas Propag. 2, 71-81 (1954).
  16. W. Rotman, "A study of single-surface corrugated guides," Proc. IRE 39, 952-959 (1951).
  17. B. Noble, Method Based On the Wiener-Hopf Technique for the Solution of Partial Differential Equations London (Pergamon, 1958).
  18. S. V. Boriskina, P. Sewell, T. M. Benson, A. I. Nosich, "Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization," J. Opt. Soc. Amer. A 21, 393-402 (2004).
  19. G. A. Kalinchenko, A. M. Lerer, "Investigations of dielectric gratings using electrodynamic models based on volume integral equations," J. Commun. Technol. Electron. 48, 1221 (2003).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited