OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 2 — Jan. 15, 2010
  • pp: 209–215

High-Resolution Optical Sampling of 640-Gb/s Data Using Four-Wave Mixing in Dispersion-Engineered Highly Nonlinear As$_2$S$_3$ Planar Waveguides

Jürgen Van Erps, Feng Luan, Mark D. Pelusi, Tim Iredale, Steve Madden, Duk-Yong Choi, Douglas A. Bulla, Barry Luther-Davies, Hugo Thienpont, and Benjamin J. Eggleton

Journal of Lightwave Technology, Vol. 28, Issue 2, pp. 209-215 (2010)

View Full Text Article

Acrobat PDF (1316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We present the first demonstration of an optical sampling system, using the optical Kerr effect in a chip-scale device, enabling combined capability for femtosecond resolution and broadband signal wavelength tunability. A temporal resolution ${ < }500$ fs is achieved using four-wave mixing in a 7-cm-short chalcogenide planar waveguide. The use of a short length, dispersion-shifted waveguide with ultrahigh nonlinearity ($10^4\;{\rm W}^{-1}{\cdot}{\rm{km}}^{-1}$) enables high-resolution optical sampling without the detrimental effect of chromatic dispersion on the temporal distortion of the signal and sampling pulses, as well as their phase mismatch. Using the device, we successfully monitor a 640-Gb/s optical time-division multiplexing (OTDM) datastream, showcasing its potential for integrated chip-based monitoring of signals at bitrates approaching and beyond Tb/s. We discuss fundamental limitations and potential improvements.

© 2010 IEEE

Jürgen Van Erps, Feng Luan, Mark D. Pelusi, Tim Iredale, Steve Madden, Duk-Yong Choi, Douglas A. Bulla, Barry Luther-Davies, Hugo Thienpont, and Benjamin J. Eggleton, "High-Resolution Optical Sampling of 640-Gb/s Data Using Four-Wave Mixing in Dispersion-Engineered Highly Nonlinear As$_2$S$_3$ Planar Waveguides," J. Lightwave Technol. 28, 209-215 (2010)

Sort:  Year  |  Journal  |  Reset


  1. C. Schmidt-Langhorst, H.-G. Weber, "Optical sampling techniques," J. Opt. Fiber. Commun. Rep. 2, 86-114 (2005).
  2. H. Ohta, N. Banjo, N. Yamada, S. Nogiwa, Y. Yanagisawa, "Measuring eye diagram of 320 Gbit/s optical signal by optical sampling using passively mode-locked fiber laser," Electron. Lett. 37, 1541-1542 (2001).
  3. N. Yamada, S. Nogiwa, H. Ohta, "640-Gb/s OTDM signal measurement with high-resolution optical sampling using wavelength-tunable soliton pulses," IEEE Photon. Technol. Lett. 16, 1125-1127 (2004).
  4. M. Shirane, Y. Hashimoto, H. Yamada, H. Yokoyama, "A compact optical sampling measurement system using mode-locked laser-diode modules," IEEE Photon. Technol. Lett. 12, 1537-1539 (2000).
  5. B. P. Nelson, N. J. Doran, "Optical sampling oscilloscope using nonlinear fiber loop mirror," Electron. Lett. 27, 204-205 (1991).
  6. M. Westlund, P. A. Andrekson, H. Sunnerud, J. Hansryd, J. Li, "High-performance optical-fiber-nonlinearity-based optical waveform monitoring," J. Lightw. Technol. 23, 2012-2022 (2005).
  7. R. L. Jungerman, G. Lee, O. Buccafusca, Y. Kaneko, N. Itagaki, R. Shioda, A. Harada, Y. Nihei, G. Sucha, "1-THz bandwidth C- and L-band optical sampling with a bit rate agile timebase," IEEE Photon. Technol. Lett. 14, 1148-1150 (2002).
  8. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81-85 (2008).
  9. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photon. 2, 35-38 (2008).
  10. K. Yamada, H. Fukuda, T. Tsuchizawa, T. Watanabe, T. Shoji, S. Itabashi, "All-optical efficient wavelength conversion using silicon photonic wire waveguide," IEEE Photon. Technol. Lett. 18, 1046-1048 (2006).
  11. S. Ayotte, S. Xu, H. Rong, O. Cohen, M. J. Paniccia, "Dispersion compensation by optical phase conjugation in silicon waveguide," Electron. Lett. 43, 1037-1039 (2007).
  12. M. D. Pelusi, V. G. Ta'eed, L. Fu, E. Mägi, M. R. E. Lamont, S. Madden, D.-Y. Choi, D. A. P. Bulla, B. Luther-Davies, B. J. Eggleton, "Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing," IEEE J. Sel. Top. Quantum Electron. 14, 529-539 (2008).
  13. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton, "Photonic-chip-based radio-frequency spectrum analyzer with terahertz bandwidth," Nature Photon. 3, 139-143 (2009).
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  15. PSO-101 Optical Sampling Oscilloscope Datasheet 2009 http://documents.exfo.com/specsheets/PSO-100-angHR.pdf.
  16. M. R. E. Lamont, C. M. de Sterke, B. J. Eggleton, "Dispersion engineering of highly nonlinear As$_2$S$_3$ waveguides for parametric gain and wavelength conversion," Opt. Exp. 15, 9458-9463 (2007).
  17. M. R. E. Lamont, B. Luther-Davies, D.-Y. Choi, S. Madden, X. Gai, B. J. Eggleton, "Net-gain from a parametric amplifier on a chalcogenide optical chip," Opt. Exp. 16, 20374-20381 (2008).
  18. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, B. J. Eggleton, "Dispersion engineered As$_2$S$_3$ planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals," Opt. Exp. 17, 3514-3520 (2009).
  19. S. J. Madden, D. Y. Choi, D. A. Bulla, A. V. Rode, B. Luther-Davies, V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, "Long, low loss etched As$_2$S$_3$ chalcogenide waveguides for all-optical signal regeneration," Opt. Exp. 15, 14414-14421 (2007).
  20. T. Inoue, S. Namiki, "Pulse compression techniques using highly nonlinear fibers," Lasers Photon. Rev. 2, 83-99 (2008).
  21. V. G. Ta'eed, M. D. Pelusi, B. J. Eggleton, D.-Y. Choi, S. Madden, D. Bulla, B. Luther-Davies, "Broadband wavelength conversion at 40 Gb/s using long serpentine As$_2$S$_3$ planar waveguides," Opt. Exp. 15, 15047-15052 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited