OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 2 — Jan. 15, 2010
  • pp: 223–227

Conversion of Direct to Indirect Bandgap and Optical Response of B Substituted InN for Novel Optical Devices Applications

Bin Amin, Iftikhar Ahmad, and Muhammad Maqbool

Journal of Lightwave Technology, Vol. 28, Issue 2, pp. 223-227 (2010)


View Full Text Article

Acrobat PDF (729 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Optical properties of B$_{\rm x}$In$_{1 - {\rm x}}$N are calculated as a function of the varying concentration of Boron and Indium. Indium is gradually replaced by Boron and optical properties of the resulting materials are studied. The fractional concentration of Boron is increased gradually from ${\rm x} = 0$ to ${\rm x} = 1$ in steps of 0.25. The bandgap increases with the increasing Boron concentration, from 0.95 eV for pure InN to 5.6 eV for BN. A unique behavior of BN in zinc-blend phase is observed, that is, it shifts from indirect to direct bandgap semiconductor by the substitution of In on B sites. This behavior can be used to make novel and advanced optical devices. Frequency dependent reflectivity, absorption coefficient, and optical conductivity of B$_{\rm x}$In$_{1 - {\rm x}}$N are calculated and found to be the constituent's concentration dependent. The region of reflectivity, absorption coefficient and optical conductivity shifts from lower frequency into the higher frequency as the material goes from pure InN to pure BN.

© 2010 IEEE

Citation
Bin Amin, Iftikhar Ahmad, and Muhammad Maqbool, "Conversion of Direct to Indirect Bandgap and Optical Response of B Substituted InN for Novel Optical Devices Applications," J. Lightwave Technol. 28, 223-227 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-2-223


Sort:  Year  |  Journal  |  Reset

References

  1. M. Maqbool, M. E. Kordesch, A. Kayani, "Enhanced cathodoluminescence from an amorphous AlN:Holmium phosphor by co-doped Gd $^{+ 3}$ for optical devices applications," J. Opt. Soc. Amer. B 26, 998-1001 (2009).
  2. M. Maqbool, I. Ahmad, "Ultraviolet spectroscopy of praseodymium doped in AlN and the use of gallium nitride, as ultraviolet filters in radiation shielding and protection," Current Appl. Phys. 9, 234 (2009).
  3. M. Maqbool, M. E. Kordesch, I. Ahmad, "Electron penetration depth in amorphous AlN by exploiting the luminescence of Ho and Tm ions added to AlN," Current Appl. Phys. 9, 417 (2009).
  4. M. Maqbool, I. Ahmad, H. H. Richardson, M. E. Kordesch, "Direct ultraviolet excitation of an amorphous AlN: Praesiodimium phosphor by co-doped Gd $^{3 +}$ cathodoluminescence," Appl. Phys. Lett. 91, 193511- (2007).
  5. M. Maqbool, H. H. Richardson, M. E. Kordesch, "Effect of material structure and thermal activation on the luminescence of praseodymium doped AlN thin films deposited by RF magnetron sputtering," J. Mater. Sci. 42, 5657- (2007).
  6. M. Maqbool, I. Ahmad, "Spectroscopy of gadolinium ion and disadvantages of gadolinium impurity in tissue compensators and collimators used in radiation treatment planning," Spectroscopy 21, 205 (2007).
  7. M. Maqbool, "Luminescence from thulium and samarium doped amorphous AlN thin films deposited by RF magnetron sputtering and the effect of thermal annealing on luminescence," Eur. Phys. J. Appl. Phys. 34, (2006).
  8. S. B. Aldabergenova, G. Frank, H. P. Strunk, M. Maqbool, H. H. Richardson, M. E. Kordesch, "Structure changes of AlN:Ho films with annealing and enhancement of the Ho$^{3 +}$ emission," J. Non-Cryst. Solids 352, 1290- (2006).
  9. M. Maqbool, H. H. Richardson, M. E. Kordesch, "Cathodoluminescence of praseodymium doped amorphous AlN, GaN and turbostratic BN," Mater. Res. Soc. Symp. Proc. Vol. 831 Article E8.12.1, @2005 Materials Research Society .
  10. J. M. Zavada, N. Nepal, J. Y. Lin, H. X. Jiang, "Ultraviolet photoluminescence from Gd-implanted AlN epilayers," Applied Physics Letters 89, 152107- (2006).
  11. J. M. Khoshman, M. E. Kordesch, "Spectroscopic ellipsometry characterization of amorphous aluminum nitride and indium nitride thin films," Phys. Stat. Sol. (c) 2, 2821- (2005).
  12. H. H. Richardson, P. G. Van Patten, D. R. Richardson, M. E. Kordesch, "Thin-film electroluminescent devices grown on plastic substrates using an amorphous AlN:Tb$^{3 +}$ phosphor," Appl. Phys. Lett. 80, 2207-2209 (2002).
  13. J. Wu, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, Y. Nanishi, "Unuaual properties of the fundamental bandgap of InN," Appl. Phys. Lett. 80, 3967-3969 (2002).
  14. T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, E. Kurimoto, "Optical bandgap energy of wurtzite InN," Appl. Phys. Lett. 81, 1246- (2002).
  15. T. L. Tansley, C. P. Foley, "Optical bandgap of indium nitride," J. Appl. Phys. 59, 3241- (1986).
  16. K. Butcher, H. Hirshy, R. Perks, M. Fouquet, P. Chen, "Phys. stoichiometry effects and the moss-burstein effect for InN," Stat. Sol. A 203, 66 (2006).
  17. J. M. Khoshman, M. E. Kordesch, "Optical absorption in amorphous InN thin films," J. Non-Cryst. Solids 352, 5572- (2006).
  18. J. Boudiombo, J. C. Lourergue, A. Bath, P. Thevenin, "Electro-optical characterization of h-BN thin film waveguides by prism coupling technique," Mater. Sci. Eng. B. 59, 244- (1999).
  19. O. K. Andersen, "Linear methods in band theory," Phys. Rev. B 12, 3060- (1975).
  20. A. Ayuela, J. Enkovaara, K. Ullakko, R. M. Nieminen, "Structural properties of magnetic heusler alloys," J. Phys. Condens. Matter. 11, 2017- (1999).
  21. K. Schwarz, P. Blaha, "Solid state calculations using WIEN2k," Computational Materials Science 28, 259- (2003).
  22. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvanicka, J. Luitz, “WIEN2K, an Augmented Plane Wave ${+}$ Local Orbital Program for Calculating Crystal Properties,” Karlheinz Schwarz, techn. UniversitatWienAustria (2001) ISBN: 3-9501031-1-1-2.
  23. G. Rahman, S. Cho, S. C. Hong, "Half metallic ferromagnetism of Mn doped AlSb: A first principles study," Phys. Stat. Sol. (B) 244, 4435- (2007).
  24. S. Mecabih, K. Benguerine, N. Benosman, B. Abbar, B. Bouhafs, "Generalized gradient calculations of magneto-electronic properties for diluted magnetic semiconductors ZnMnS and ZnMnSe," Physica B 403, 3452- (2008).
  25. A. Bhattacharyya, S. Lyer, E. Iliopoulos, A. V. Sampath, J. Cabalu, I. Friel, "High reflectivity and crack-free AlGaN/AlN ultraviolet distributed Bragg reflectors," J. Vac. Sci. Technol. B 20, 1229- (2002).
  26. T. Someya, Y. Arakawa, "Highly reflective GaN/Al $_{0.34}$ Ga $_{0.66}$ N quarter-wave reflectors grown by metal organic chemical vapor deposition," Appl. Phys. Lett. 73, 3653- (1998).
  27. M. K. Emsley, M. S. Unlu, "Silicon substrates with buried distributed bragg reflectors for resonant cavity-enhanced optoelectronics," IEEE J. Sel. Topics Quantum Electron. 8, 948- (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited