OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 20 — Oct. 15, 2010
  • pp: 2919–2924

Wideband EDFA Based on Erbium Doped Crystalline Zirconia Yttria Alumino Silicate Fiber

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu

Journal of Lightwave Technology, Vol. 28, Issue 20, pp. 2919-2924 (2010)

View Full Text Article

Acrobat PDF (1228 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A wideband erbium-doped fiber amplifier (EDFA) is demonstrated using an Erbium-doped zirconia fiber as the gain medium. With a combination of both Zr and Al, we could achieve a high erbium doping concentration of 4320 ppm in the glass host without any phase separations of rare-earths. The Erbium doped fiber (EDF) is obtained from a fiber preform, which is fabricated in a ternary glass host, zirconia-yttria-aluminum codoped silica fiber using a MCVD process. Doping of Er$_{2}$O$_{3}$ into Zirconia yttria-aluminosilicate based glass is done through solution doping process. The maximum gain of 21.8 dB is obtained at 1560 nm with 2 m long of EDF and co-pumped with 1480 nm laser diode. At high input signal of ${-}4$ dBm, a flat-gain at average value of 8.6 dB is obtained with a gain variation of less than 4.4 dB within the wavelength region of 1535–1605 nm and using 3 m of EDF and 100 mW pump power. The corresponding noise figure is maintained below 9.6 dB at this wavelength region.

© 2010 IEEE

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, "Wideband EDFA Based on Erbium Doped Crystalline Zirconia Yttria Alumino Silicate Fiber," J. Lightwave Technol. 28, 2919-2924 (2010)

Sort:  Year  |  Journal  |  Reset


  1. M. Naftaly, S. Shen, A. Jha, "Tm$^{3 +}$-doped tellurite glass for a broadband amplifier at 1.47 $\nu$ m," Appl. Opt. 39, 4979-4984 (2000).
  2. S. Jiang, B.-C. Hwang, T. Luo, K. Seneschal, F. Smektala, S. Honkanen, J. Lucas, N. Peyghambarian, "Net gain of 15.5 dB from a 5.1 cm-long Er3+ -doped phosphate glass fiber," Proc. OFC (2000).
  3. S. W. Harun, R. Parvizi, X. S. Cheng, A. Parvizi, S. D. Emami, H. Arof, H. Ahmad, "Experimental and theoretical studies on a double-pass C-band bismuth-based erbium-doped fiber amplifier," Opt. Laser Technol. 42, 790-793 (2010).
  4. E. Snoeks, P. G. Kik, A. Polman, "Concentration quenching in erbium-implanted alkali-silicate glasses," Opt. Mater. 5, 159-167 (1996).
  5. D. M. Gill, L. McCaughan, J. C. Wright, "Spectroscopic site determinations in erbium-doped lithium niobate," Phys. Rev. B 53, 2334-2344 (1996).
  6. X. S. Cheng, R. Parvizi, H. Ahmad, S. W. Harun, "Wide-band bismuth-based erbium-doped fiber amplifier with a flat-gain characteristic," IEEE Photon. J. 1, 259-264 (2009).
  7. S. W. Harun, N. Tamchek, S. Shahi, H. Ahmad, "L-band amplification and multi- wavelength lasing with bismuth-based erbium doped fiber," Progr. Electromagn.Research C 6, 1-12 (2009).
  8. A. Dhar, M. C. Paul, M. Pal, A. K. Mondal, S. Sen, H. S. Maiti, R. Sen, "Characterization of porous core layer for controlling rare earth incorporation in optical fiber," Opt. Exp. 14, 9006-9015 (2006).
  9. G. D. Wilk, R. M. Wallace, J. M. Anthony, "Hafnium and zirconium silicates for advanced gate dielectrics," J. Appl. Phys. 87, 484-492 (2000).
  10. B. Rayner, R. Therrien, G. Lucovsky, "The structure of plasma-deposited and annealed pseudo-binary ZrO$_2$-SiO$_2$ alloys," Proc. Mater. Res. Soc. Symp. (2000).
  11. P. F. James, "Liquid-phase separation in glass-forming systems," J. Mater. Sci. 10, 1802 (1975).
  12. C. Zhao, O. Richard, H. Bender, M. Caymax, S. De Gendt, M. Heyns, E. Young, G. Roebben, O. Van Der Biest, S. Haukka, "Miscibility of amorphous ZrO$_{2}$-Al$_{2}$ O$_{3}$ binary alloy," Appl. Phys. Lett. 80, 2374-2376 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited