OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 20 — Oct. 15, 2010
  • pp: 2956–2963

Low-Loss Chip-to-Chip Optical Interconnection Using Multichip Optoelectronic Package With 40-Gb/s Optical I/O for Computer Applications

Yutaka Takagi, Atsushi Suzuki, Toshikazu Horio, Takeshi Ohno, Toshifumi Kojima, Toshikatsu Takada, Satoshi Iio, Kazushige Obayashi, and Masahiko Okuyama

Journal of Lightwave Technology, Vol. 28, Issue 20, pp. 2956-2963 (2010)


View Full Text Article

Acrobat PDF (1120 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We have developed novel optoelectronic packages and optical transmission system using an optical connector with an external optical waveguide to achieve low-loss chip-to-chip optical interconnections for computer systems. In order to connect the package and the connector, we have also proposed a socket as a coupling structure to realize an all passive alignment and high coupling efficiency. We have demonstrated high-speed and error-free signal transmission with four channels at 10-Gb/s/ch and up to 12-Gb/s/ch. Optical input and output (I/O) interfaces, including optical devices and controller integrated circuits (ICs), have been constructed onto the package surface by conventional flip-chip mounting. The optoelectronic package has optical waveguide holes (OWGHs) to pass optical signal vertically from a vertical-cavity surface-emitting laser (VCSEL) and to a photodiode (PD). The OWGHs consist of core and cladding material to enhance optical confinement. The optical connector that is just set underneath the package with two guide pins contains the thin-film polymer waveguide with 45$^{\circ}$-ended mirrors to bend the optical signal. Therefore, the shorter optical coupling distance has achieved low-loss optical link without microlenses between packages. We have also proposed an alignment structure to easily enable passive alignment, which is based on existing land grid array (LGA) packages and sockets clamping structures to simultaneously improve cost-competitiveness and usability.

© 2010 IEEE

Citation
Yutaka Takagi, Atsushi Suzuki, Toshikazu Horio, Takeshi Ohno, Toshifumi Kojima, Toshikatsu Takada, Satoshi Iio, Kazushige Obayashi, and Masahiko Okuyama, "Low-Loss Chip-to-Chip Optical Interconnection Using Multichip Optoelectronic Package With 40-Gb/s Optical I/O for Computer Applications," J. Lightwave Technol. 28, 2956-2963 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-20-2956


Sort:  Year  |  Journal  |  Reset

References

  1. D. G. Kam, M. B. Ritter, T. J. Beukema, J. F. Bulzacchelli, P. K. Pepeljugoski, Y. H. Kwark, L. Shan, X. Gu, C. W. Baks, R. A. John, G. Hougham, C. Schuster, R. Rimolo-Donadio, B. Wu, "Is 25 Gb/s on-board signaling viable?," IEEE Trans. Adv. Packag. 32, 328-344 (2009).
  2. P. Pepeljugoski, D. Kuchta, "Jitter performance of short length optical interconnects for rack-to-rack applications," Proc. Opt. Fiber Commun. Conf., (OFC) (2009).
  3. M. Glick, D. Andersen, M. Kaminsky, L. Mummert, "Dynamically reconfigurable optical links for high-bandwidth data center networks," Proc. Opt. Fiber Commun. Conf. (OFC) (2009).
  4. E. Mohammed, J. Liao, A. Kern, D. Lu, H. Braunisch, T. Thomas, S. Hyvonen, S. Palermo, I. A. Young, "Optical hybrid package with an 8-channel 18 GT/s CMOS transceiver for chip-to-chip optical interconnect," Proc. SPIE (2008) pp. 6889-31.
  5. L. Schares, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosener, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C.-K. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan, D. W. Dolfi, "Terabus: Terabit/second-class card-level optical interconnect technologies," J. Sel. Topics Quantum Electron. 12, 1032-1044 (2006).
  6. T. Hino, R. Kuribayashi, Y. Hashimoto, T. Sugimoto, J. Ushioda, J. Sasaki, I. Ogura, I. Hatakeyama, K. Kurata, "A 10 Gbps$\,\times\,$12 channel pluggable optical transceiver for high-speed interconnections," Proc. 58th Electron. Compon. Technol. Conf. (ECTC) (2008) pp. 1838-1843.
  7. J. Sakai, A. Noda, K. Nakano, K. Maeda, H. Takahashi, T. Ohtsuka, C. Tanaka, H. Ono, J. Tsuchida, H. Yamaguchi, H. Kouta, "LSI-to-LSI signal transmission at 10 Gb/s/ch using ultrahigh density optoelectronic module," Proc. Int. Conf. Electron. Packag. 2007 (ICEP) (2007).
  8. A. Suzuki, T. Ishikawa, Y. Wakazono, Y. Hashimoto, H. Masuda, S. Suzuki, M. Tamura, T. Suzuki, K. Kikuchi, H. Nakagawa, M. Aoyagi, T. Mikawa, "Vertically pluggable, compact, and 10-Gb/s$\, \times \,$12-ch optical modules with anisotropic conductive film for over 100-Gb/s optical interconnect systems," J. Lightw. Technol. 27, 3249-3258 (2009).
  9. K. Oda, T. Matsubara, K. Watanabe, K. Tanaka, M. Maetani, "Optical connection between optical via hole in BGA package and optical waveguide on board," IEICE Trans. Electron. E92-C, 239-246 (2009).
  10. H. Hamasaki, H. Furuyama, H. Numata, C. Takubo, "Novel optoelectronic LSI packaging suitable for standard FR-4 printed wiring board with bandwidth capability of over 1 Tbps," Proc. 56th Electron. Compon. Technol. Conf. (ECTC) (2006) pp. 298-302.
  11. T. Ohno, Y. Takagi, T. Horio, T. Kojima, T. Takada, K. Obayashi, M. Okuyama, "Optoelectronic package using optical waveguide hole for chip-to-chip interconnection," Proc. 12th Optoelectron. Commun. Conf. (OECC) (2007) pp. 186-187.
  12. Y. Takagi, T. Ohno, T. Horio, A. Suzuki, T. Kojima, T. Takada, S. Iio, K. Obayashi, M. Okuyama, "Optoelectronic package having low-loss optical waveguide hole with core-clad structure for chip-to-chip interconnection," IEEE Photon. Technol. Lett. 20, 2033-2035 (2008).
  13. Y. Takagi, A. Suzuki, T. Horio, T. Ohno, T. Kojima, T. Takada, S. Iio, K. Obayashi, M. Okuyama, "Optoelectronic package having optical waveguide hole and 4-ch$\,\times\,$10-Gb/s chip-to-chip interconnection using thin-film waveguide connector," Proc. Opt. Fiber Commun. Conf. (OFC) (2009).
  14. T. Shibata, A. Takahashi, "Flexible opto-electronic circuit board for in-device interconnection," Proc. 58th Electron. Compon. Technol. Conf. (ECTC) (2008) pp. 261-267.
  15. T. Sugawara, Y. Matsuoka, T. Shibata, H. Masuda, A. Takahashi, "High-speed and low-noise optical interface with FPC compound flexible optical waveguides," Proc. 2009 IEICE Soc. Conf. (2009) pp. 213.
  16. A. Suzuki, K. Suzuki, Y. Wakazono, S. Suzuki, T. Yamaguchi, H. Masuda, K. Saito, M. Kinoshita, O. Ibaragi, K. Kikuchi, H. Nakagawa, Y. Okada, M. Aoyagi, "Low-cost and high-density 10 Gbps/ch optical parallel link module for multi-terabit router application," Proc. 32nd Eur. Conf. Opt. Commun. (ECOC) (2006).
  17. T. Ohno, M. Ono, S. Wakamatsu, A. Kawamura, T. Horio, A. Suzuki, T. Kojima, T. Takada, M. Okuyama, "Alignment arrangement for low-cost embedded optical interconnection module," Proc. 37th Int. Symp. Microelectronics (IMAPS) Long BeachCA (2004) presented at the, Paper TA2.
  18. Fibre Optic Connector Interface-Part5: Type MT Connector Family IEC-61745-5, (2005).
  19. T. K. Lee, E. Lua, K. C. Low, A. Ng, H. W. Ng, "Bonding development for non-conductive paste (NCP)," Proc. 7th Electron. Packag. Technol. Conf. (EPTC) (2005) pp. 780-785.
  20. Y. C. Chan, S. C. Tan, N. S. M. Lui, C. W. Tan, "Electrical characterization of NCP- and NCF-bonded fine-pitch flip-chip-on-flexible packages," IEEE Trans. Adv. Packag. 29, 735-740 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited