OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 20 — Oct. 15, 2010
  • pp: 2984–2992

Monolithic Multistage Optoelectronic Switch Circuit Routing 160 Gb/s Line-Rate Data

Aaron Albores-Mejia, Fausto Gomez-Agis, Harm J. S. Dorren, Xaveer J. M. Leijtens, Tjibbe de Vries, Yok-Siang Oei, Martijn J. R. Heck, Richard Nötzel, D. J. Robbins, Meint K. Smit, and Kevin A. Williams

Journal of Lightwave Technology, Vol. 28, Issue 20, pp. 2984-2992 (2010)

View Full Text Article

Acrobat PDF (898 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We propose, characterise and demonstrate a photonic multistage switching circuit operating at 160 Gb/s serial line rates. The circuit is realised on a re-grown active-passive wafer exploiting multiple stages of loss-compensating semiconductor optical amplifier crossbar switch elements. Excellent 40 dB crosstalk extinction is achieved, with signal to noise ratios of up to 39 dB/0.06 nm. Low loss circuit operation is presented, with the prospect of gain if antireflection coatings are applied at the input and output facet.Bit error rate studies show only modest levels of signal degradation under both static and dynamic operation. For static operation, power penalties of 0.6 dB and 1.2 dB are measured for two and four switch stages respectively. Dynamic switching is demonstrated with a power penalty of order 2.2 dB.The combined demonstration of a multistage monolithic photonic circuit and high line rate signal processing represents an important milestone towards ultrahigh data density optoelectronic signal processing.

© 2010 IEEE

Aaron Albores-Mejia, Fausto Gomez-Agis, Harm J. S. Dorren, Xaveer J. M. Leijtens, Tjibbe de Vries, Yok-Siang Oei, Martijn J. R. Heck, Richard Nötzel, D. J. Robbins, Meint K. Smit, and Kevin A. Williams, "Monolithic Multistage Optoelectronic Switch Circuit Routing 160 Gb/s Line-Rate Data," J. Lightwave Technol. 28, 2984-2992 (2010)

Sort:  Year  |  Journal  |  Reset


  1. I. H. White, E. T. Aw, K. Williams, H. Wang, A. Wonfor, R. Penty, "Scalable optical switches for computing applications," OSA J. Opt. Netw. 8, 215-224 (2009).
  2. K. A. Williams, "Integrated semiconductor optical amplifier-based switch fabrics for high capacity interconnects," OSA J. Opt. Netw. 6, 189-199 (2007).
  3. R. Luijtens, R. Grzybowski, "The OSMOSIS optical packet switch for supercomputers," Optical Fiber Communications Conference (2009).
  4. O. Liboiron-Ladoucceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang, C. P. Lai, A. Biberman, K. Bergman, "The data vortex optical packet switched interconnection network," J. Lightw. Technol. 26, 1777-1789 (2008).
  5. T. Lin, K. A. Williams, R. V. Penty, I. H. White, M. Glick, "Capacity scaling in a multi-host wavelength striped SOA-based switch fabric," J. Lightw. Technol. 25, 655-663 (2007).
  6. M. Renaud, M. Bachmann, M. Erman, "Semiconductor optical space switches," IEEE J. Sel. Topics Quantum Electron. 2, 277-288 (1996).
  7. E. Almström, C. P. Larsen, L. Gillner, W. H. van Berlo, M. Gustavsson, E. Berglind, "Experimental and analytical evaluation of packaged 4$\_$4 InGaAsP/InP semiconductor optical amplifier gate switch matrices for optical networks," J. Lightw. Technol. 14, 996-1004 (1996).
  8. G. A. Fish, B. Mason, L. A. Coldren, S. P. Den Baars, "Compact 4${\_}$4 InGaAsP–InP optical crossconnect with a scaleable architecture," IEEE Photon. Technol. Lett. 10, 1256-1258 (1998).
  9. J. Sasaki, H. Hatakeyama, T. Tamanuki, S. Kitamura, M. Yamaguchi, N. Kitamura, T. Shimoda, M. Kitamura, T. Kato, M. Itoh, "Hybrid integrated 4${\_}$4 optical matrix switch using self-aligned semiconductor optical amplifier gate arrays and silica planar lightwave circuit," Electron. Lett. 34, 986-987 (1998).
  10. N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommerau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, D. Chiaroni, "A highly integrated 32-SOA gates optoelectronic module suitable for IP multi-Terabit optical packet routers," Proc. OFC (2001) pp. PD32-1-PD32-3.
  11. R. Varrazza, I. B. Djordjevic, S. Yu, "Active vertical-coupler-based optical crosspoint switch matrix for optical packet-switching applications," J. Lightw. Technol. 22, 2034-2042 (2004).
  12. H. Onaka, Y. Aoki, K. Sone, G. Kakawaga, Y. Kai, S. Yoshida, Y. Takita, K. Morito, S. Tanaka, S. Kinoshita, "WDM optical packet interconnection using multi-gate SOA switch architecture for peta-flops ultra-high-performance computing systems," Proc. Eur. Conf. Exhibition Opt. Commun. (2006).
  13. Y. Kai, K. Sone, S. Yoshida, Y. Aoki, G. Nakagawa, S. Kinoshita, "A compact and lossless 8$\,\times\,$8 SOA gate switch subsystem for WDM optical packet interconnections," Proc. Eur. Conf. Opt. Commun. (2008).
  14. H. Wang, A. Wonfor, K. A. Williams, R. V. Penty, I. H. White , "Demonstration of a lossless monolithic 16$\,\times\,$16 QW SOA switch," Proc. Eur. Conf. Opt. Commun. (2009).
  15. K. E. Stubkjaer, "Semiconductor optical amplifier-based all-optical gates for high-speed optical processing," IEEE J. Sel. Topics Quantum Electron. 6, 1428-1425 (2000).
  16. M. Scaffardi, N. Andriolli, G. Meloni, G. Berrettini, F. Fresi, P. Castoldi, L. Poti, A. Bogoni, "Photonic combinatorial network for contention management in 160 Gb/s interconnection networks based on all-optical 2$\,\times\,$2 switching elements," IEEE J. Sel. Topics Quantum Electron. 13, 1531-1539 (2007).
  17. Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y.-S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, H. J. S. Dorren, "Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical Flip–Flop," IEEE J. Sel. Topics Quantum Electron. 14, 801-807 (2008).
  18. R. Spanke, V. E. Benes, "N-stage planar optical permutation network," Appl. Opt. 26, 1226-1229 (1987).
  19. A. Shacham, H. Wang, K. Bergman, "Experimental demonstration of a complete SPINet optical packet switched interconnection network," Proc. OFC (2007).
  20. M. G. Hluchyj, M. J. Karol, "ShuffleNet: An application of generalised perfect shuffles to multihop lightwave networks," J. Lightw. Technol. 9, 1386-1397 (1991).
  21. A. Shacham, B. G. Lee, K. Bergman, "A wideband nonblocking 2$\,\times\,$2 switching node for a Spin network," IEEE Photon. Technol. Lett. 17, 2742-2744 (2005).
  22. C. Wu, T. Feng, "On a Class of Multistage Interconnection Networks," IEEE Trans. Comput. C-29, 694-702 (1980).
  23. W. J. Dally, B. Townes, Principles and Practices in Interconnection Networks (Elsevier, 2003).
  24. W. Kabacinski, Nonblocking Electronic and Photonic Switching Fabrics (Springer, 2005).
  25. A. Albores-Mejia, K. A. Williams, T. de Vries, E. Smalbrugge, Y. S. Oei, M. K. Smit, R. Notzel, "Integrated 2$\,\times\,$2 quantum dot optical crossbar switch in 1.55 $\mu$m wavelength range," IET Electron. Lett. 45, 313-314 (2009).
  26. M. J. R. Heck, A. La Porta, X. J. M. Leijtens, L. M. Augustin, T. de Vries, E. Smalbrugge, Y. S. Oei, R. Nötzel, R. Gaudino, D. J. Robbins, M. K. Smit, "Monolithic AWG-based discretely tunable laser diode with nanosecond switching speed," IEEE Photon. Technol. Lett. 21, 905-907 (2009).
  27. J. D. Thomson, H. D. Summers, P. J. Hulyer, P. M. Smowton, P. Blood, "Determination of single-pass optical gain and internal loss using a multisection device," Appl. Phys. Lett. 75, 2527-2529 (1999).
  28. A. Albores-Mejia, K. A. Williams, F. Gomez-Agis, S. Zhang, H. J. S. Dorren, X. J. M. Leijtens, T. de Vries, Y. S. Oei, M. J. R. Heck, R. Notzel, D. J. Robbins, M. K. Smit, "160 Gb/s serial line rates in a monolithic optoelectronic multistage interconnection network," Proc. 17th IEEE Symp. High Perf. Interconnects (2009) pp. 157-162.
  29. S. Randel, B. Konrad, A. Hodzic, K. Petermann, "Influence of bitwise phase changes in the performance of 160 Gbit/s transmission systems," Proc. OFC (2002).
  30. Avtech Electrosystems Ottawa www.avtechpulse.com.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited