OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 20 — Oct. 15, 2010
  • pp: 2993–3003

High Spatial and Spectral Resolution Long-Range Sensing Using Brillouin Echoes

Stella M. Foaleng, Moshe Tur, Jean-Charles Beugnot, and Luc Thévenaz

Journal of Lightwave Technology, Vol. 28, Issue 20, pp. 2993-3003 (2010)

View Full Text Article

Acrobat PDF (1245 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


High spatial $({\sim} {\hbox {cm}})$ and spectral $({\sim} {\hbox {MHz}})$ resolution Brillouin sensing is realized with enhanced signal to noise ratio using a pre-activated acoustic field and an optical phase control over the interrogating pulse. Pre-activation of the acoustic field preserves the Brillouin natural linewidth and a differential gain technique extends the method to long ranges. Experimentally, fully resolved measurements of the Brillouin frequency shift of a 5 cm spot perturbation at the far end of a 5 km fiber have been performed with a frequency resolution of 3 MHz $(2\sigma)$, using a 500 ps (5 cm) $\pi$ phase shift pulse.

© 2010 IEEE

Stella M. Foaleng, Moshe Tur, Jean-Charles Beugnot, and Luc Thévenaz, "High Spatial and Spectral Resolution Long-Range Sensing Using Brillouin Echoes," J. Lightwave Technol. 28, 2993-3003 (2010)

Sort:  Year  |  Journal  |  Reset


  1. T. Kurashima, T. Horuguchi, M. Tateda, "Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers," Opt. Lett. 15, 1038-1040 (1990).
  2. X. Bao, D. J. Webb, D. A. Jackson, "32-Km distributed temperature sensor using Brillouin loss in optical fiber," Opt. Lett. 18, 1561-1563 (1993).
  3. M. Nikles, L. Thévenaz, P. A. Robert, "Simple distributed fiber sensor based on Brillouin gain spectrum analysis," Opt Lett. 21, (1996).
  4. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, Y. Koyamada, "Brillouin optical fiber time domain reflectometry," IEICE Trans. Commun. E76-B, 382-390 (2008).
  5. A. Fellay, L. Thévenaz, M. Facchini, M. Nikles, P. Robert, "Distributed sensing using stimulated Brillouin scattering: Towards ultimate resolution," Proc. 12th Int. Conf. Opt. Fiber Sensors (1997) pp. 324-327.
  6. G. Agrawal, Nonlinear Optics (Academic, 2008).
  7. D. Garus, T. Gogolla, K. Krebber, F. Schliep, "Brillouin opticalfiber frequency-domain analysis for distributed temperature and strain measurements," J. Lightw. Technol. 15, 654-662 (1997).
  8. K. Hotate, M. Tanaka, "Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique," IEEE Photon. Technol. Lett. 14, 179-181 (2002).
  9. X. Bao, A. Brown, M. DeMerchant, J. Smith, "Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (10-ns) pulses," Opt. Lett. 24, 510-512 (1999).
  10. V. Lecoeuche, D. J. Webb, C. N. Pannell, D. A. Jackson, "Transient response in high-resolution Brillouin-based distributed sensing using probe pulses shorter than the acoustic relaxation time," Opt. Lett. 25, 156-158 (2000).
  11. L. Zou, X. Bao, Y. Wan, L. Chen, "Coherent probe-pump-based Brillouin sensor for centimeter-crack detection," Opt. Lett. 30, 370-372 (2005).
  12. A. W. Brown, B. G. Colpitts, "Dark-Pulse Brillouin optical time-domain sensor with 20-mm spatial resolution," J. Lightw. Technol. 25, 381-386 (2007).
  13. K. Kishida, C.-H. Li, Structural Health Monitoring and Intelligent Infrastructure (Taylor & Francis, 2006) pp. 471-477.
  14. L. Thévenaz, S. M. Foaleng, "Distributed fiber sensing using Brillouin echoes," Proc. 19th Int. Conf. Opt. Fiber Sensors (2008) pp. 70043N-70044.
  15. S. M. Foaleng, J.-C. Beugnot, L. Thévenaz, "Optimized configuration for high resolution distributed sensing using Brillouin echoes," Proc. 20th Int. Conf. Opt. Fiber Sens. (2009) pp. 75032C-4.
  16. W. Li, X. Bao, Y. Li, L. Chen, "Differential pulse-width pair BOTDA for high spatial resolution sensing," Opt. Exp. 16, 21616-21625 (2008).
  17. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  18. L. Thévenaz, J.-C. Beugnot, "General analytical model for distributed Brillouin sensors with sub-meter spatial resolution," Pro. 20th Int. Conf. Optical Fiber Sens. SPIE (2009) pp. 7503.
  19. S. Diaz, S. M. Foaleng, M. Lopez-Amo, L. Thévenaz, "A high-performance optical time-domain Brillouin distributed fiber sensor," IEEE Sensors J. 8, 1268-1272 (2008).
  20. M. Niklès, L. Thévenaz, P. Robert, "Brillouin gain spectrum characterization in single-mode optical fibers," J. Lightw. Technol. 15, 1842-1851 (1997).
  21. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, Y. Koyamada, "Development of a distributed sensing technique using Brillouin scattering," J. Lightw. Technol. 13, 1296-1302 (1995).
  22. E. Geinitz, S. Jetschke, U. Röpke, S. Schröter, R. Willsch, H. Bartelt, "The influence of pulse amplification on distributed fiber-optic Brillouin sensing and a method to compensate for systematic errors," Meas. Sci. Technol. 10, 112-116 (1999).
  23. R. W. Tkach, A. R. Chraplyvy, "Fiber Brillouin amplifiers," Opt. Quantum Electron. 21, 105-112 (1989).
  24. N. A. Olsson, J. P. Van Der Ziel, "Characteristics of a semiconductor laser pumped Brillouin amplifier with electronically controlled bandwidth," J. Lightw. Technol. 1, 147-150 (1987).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited