OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 20 — Oct. 15, 2010
  • pp: 3019–3028

Silicon RF-Photonic Filter and Down-Converter

Kun-Yii Tu, Mahmoud S. Rasras, Douglas M. Gill, Sanjay S. Patel, Young-Kai Chen, Alice E. White, Andrew Pomerene, Daniel Carothers, James Beattie, Mark Beals, Jurgen Michel, and Lionel C. Kimerling

Journal of Lightwave Technology, Vol. 28, Issue 20, pp. 3019-3028 (2010)


View Full Text Article

Acrobat PDF (847 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

An RF-photonic filter and down-converter system based on a compact and fully tunable silicon optical filter has been demonstrated and analyzed. Its frequency down-conversion was implemented using optical heterodyne detection with an injection locked laser. This system filters a 1.25 GHz-wide signal with $>20$ dB filter rejection and a very broad 20 GHz center tuning range. The frequency down-conversion process is operated in a low-IF mode to avoid laser low frequency noises. Measured system Spurious-Free Dynamic Range (SFDR) of 94.3 dB*Hz$^{2/3}$ has been limited by the optical losses from I/O coupling and measurement setup. We examined experimentally that 105.3 dB*Hz$^{2/3}$ SFDR is achievable if the encountered optical loss were reduced to the filter's intrinsic loss. Based on the excellent agreements between measured and simulated results, we explore the critical improvements of the silicon photonic devices needed for the system to achieve 118 dB*Hz$^{2/3}$ SFDR and briefly review the status of the component technologies.

© 2010 IEEE

Citation
Kun-Yii Tu, Mahmoud S. Rasras, Douglas M. Gill, Sanjay S. Patel, Young-Kai Chen, Alice E. White, Andrew Pomerene, Daniel Carothers, James Beattie, Mark Beals, Jurgen Michel, and Lionel C. Kimerling, "Silicon RF-Photonic Filter and Down-Converter," J. Lightwave Technol. 28, 3019-3028 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-20-3019


Sort:  Year  |  Journal  |  Reset

References

  1. S. A. Pappert, B. Krantz, "RF photonics for radar front-ends," Proc. Radar Conference (2007) pp. 965-970.
  2. K. Entesari, G. M. Rebeiz, "A 12–18 GHz three-pole RF MEMS tunable filter," IEEE Trans. Microw. Theory Tech. 53, 2566-2571 (2005).
  3. K. Entesari, G. M. Rebeiz, "A differential 4-bit 6.5–10 GHz RF MEMS tunable filter," IEEE Trans. Microw. Theory Tech. 53, 1103-1110 (2005).
  4. H. Joshi, H. H. Sigmarsson, D. Peroulis, W. J. Chappell, "Highly loaded evanescent cavities for widely tunable high-Q filters," Proc. IEEE MTT Microwave Symp. (2007) pp. 2133-2136.
  5. J. Capmany, B. Ortega, D. Pastor, "A tutorial on microwave photonic filters," J. Lightw. Technol. 24, 201-229 (2006).
  6. M. E. Manka, "Microwave photonics for electronic warfare applications," Proc. IEEE MWP'08 Conf. (2008) pp. 175-178.
  7. M. S. Rasras, D. M. Gill, S. S. Patel, K.-Y. Tu, Y.-K. Chen, A. E. White, A. T. Pomerene, D. N. Carothers, M. J. Grove, D. K. Sparacin, J. Michel, M. A. Beals, L. C. Kimerling, "Demonstration of a fourth-order pole-zero optical filter integrated using CMOS processes," J. Lightw. Technol. 25, 87-92 (2007).
  8. Y. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004).
  9. T. Barwicz, M. A. Popovic, M. R. Watts, P. T. Rakich, E. P. Ippen, H. I. Smith, "Fabrication of add-drop filters based on frequency-matched microring resonators," J. Lightw. Technol. 24, 2207-2218 (2006).
  10. D. K. Sparacin, S. J. Spector, L. C. Kimerling, "Silicon waveguide sidewall smoothing by wet chemical oxidation," J. Lightw. Technol. 23, 2455-2461 (2005).
  11. B. Analui, D. Gukenberger, D. Kucharski, A. Narasimha, "Fully integrated 20 Gb/s optoelectronic transceiver implemented in a standard 0.13 um CMOS SOI technology," IEEE J. Solid-State Circuits 41, 2945-2955 (2006).
  12. M. S. Rasras, K. Y. Tu, D. M. Gill, Y. K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, L. C. Kimerling, "Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators," J. Lightw. Technol. 27, 2105-2110 (2005).
  13. S. Yamashita, T. Okoshi, "Suppression of beat noise from optical amplifiers using coherent receivers," J. Lightw. Technol. 12, 1029-1035 (1994).
  14. E. I. Ackerman, C. Cox, IIIG. Betts, H. Roussell, K. Ray, F. O'Donnell, "Input impedance conditions for minimizing the noise figure of an analog optical lLink," IEEE Trans. Microw. Theory Tech. 46, 2025-2031 (1998).
  15. D. M. Sabido, L. G. Kazovsky, "Dynamic range of optically amplified RF optical links," IEEE Trans. Microw. Theory Tech. 49, 1950-1955 (2001).
  16. S. Ryu, S. Yamamoto, H. Taga, Y. Yoshida, H. Wakabayashi, "Long haul coherent optical fiber communication systems using optical amplifiers," J. Lightw. Technol. 9, 251-260 (1991).
  17. N. A. Olsson, "Lightwave systems with optical amplifiers," J. Lightw. Technol. 7, 1071-1082 (1989).
  18. A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, D. Kasemset, "Interfaces for high speed fiber-optics links: Analysis and experiment," IEEE Trans. Microw. Theory Tech. 39, 2031-2044 (1991).
  19. L. Vivien, M. Rouviere, J. Fedeli, D. Marris-Morini, J. Damlencourt, J. Mangeney, P. Crozat, L. El Mehaoui, E. Cassan, X. Le Roux, D. Pascal, S. Laval, "High speed and high responsivity germanium photodetector integrated in a silicon-on-insulator microwaveguide," Opt. Exp. 15, 9843-9848 (2007).
  20. D. Ahn, C.-Y. Hong, J. Liu, M. Beals, L. C. Kimerling, J. Michel, J. Chen, F. X. Kaertner, "High performance, waveguide integrated Ge. photo detectors," Opt. Exp. 15, 3916-3921 (2007).
  21. K.-W. Ang, S. Zhu, M. Yu, G.-Q. Lo, D.-L. Kwong, "High performance waveguided Ge-on-SOI metal-semiconductor-metal photodetectors with novel silicon-carbon schottky barrier enhancement layer," IEEE Photon. Technol. Lett. 20, 754-756 (2008).
  22. E. I. Ackerman, W. K. Burns, G. E. Betts, J. X. Chen, J. L. Prince, M. D. Regan, H. V. Roussell, C. H. Cox, "RF-Over-Fiber links with very low noise figure," J. Lightw. Technol. 26, 2441-2448 (2008).
  23. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, "40 Gbit/s silicon optical modulator for high-speed applications," Electron. Lett. 43, 1196-1197 (2007).
  24. D. M. Gill, M. Rasras, K.-Y. Tu, Y. K. Chen, A. White, S. S. Patel, D. Carothers, A. Pomerere, R. Kamocsai, C. Hill, J. Battie, "Internal bandwidth equalization in a CMOS compatible Si ring modulator," IEEE Photon. Technol. Lett. 21, 200-202 (2009).
  25. Q. Xu, S. Manipatruni, B. Schmidt, J. Shaya, M. Lipson, "12.5 Gbits/s carrier injection-based silicon microring modulators," Opt. Exp. 15, 430-436 (2007).
  26. J. Liu, D. Pan, S. Jongthammanurak, S. Wada, J. C. Kimerling, J. michel, "Design of monolithically integrated GeSi electroabsoption modulators and photodetectors on an SOI platform," Opt. Exp. 15, (2007).
  27. H. W. Chen, Y. H. Kuo, J. E. Bowers, "High speed hybrid silicon evanescent Mach–Zehnder modulator and switch," Opt. Exp. 16, 20571-20576 (2008).
  28. D. Marris-Morini, L. Vivien, J. M. Fedeli, E. Cassan, P. Lyan, S. Laval, "Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure," Opt. Exp. 16, 334-339 (2008).
  29. V. M. N. Passaro, F. Dell'Olio, "Scaling and optimization of MOS optical modulators in Nanometer SOI waveguides," IEEE Trans. Nanotechnol. 7, 401-408 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited