OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 22 — Nov. 15, 2010
  • pp: 3273–3281

Design of Ge–SiGe Quantum-Confined Stark Effect Electroabsorption Heterostructures for CMOS Compatible Photonics

Leon Lever, Zoran Ikonić, Alex Valavanis, Jonathan D. Cooper, and Robert W. Kelsall

Journal of Lightwave Technology, Vol. 28, Issue 22, pp. 3273-3281 (2010)

View Full Text Article

Acrobat PDF (881 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We describe a combined 6 x 6 k · p and one-band effective mass modelling tool to calculate absorption spectra in Ge–SiGe multiple quantum well (MQW) heterostructures. We find good agreement with experimentally measured absorption spectra of Ge–SiGe MQW structures described previously in the literature, proving its predictive capability, and the simulation tool is used for the analysis and design of electroabsorption modulators. We employ strain-engineering in Ge–SiGe MQW systems to design structures for modulation at 1310 nm and 1550 nm.

© 2010 IEEE

Leon Lever, Zoran Ikonić, Alex Valavanis, Jonathan D. Cooper, and Robert W. Kelsall, "Design of Ge–SiGe Quantum-Confined Stark Effect Electroabsorption Heterostructures for CMOS Compatible Photonics," J. Lightwave Technol. 28, 3273-3281 (2010)

Sort:  Year  |  Journal  |  Reset


  1. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, M. Paniccia, "40 gbit/s silicon optical modulator for high-speed applications," Electron. Lett. 43, (2007).
  2. D. Miller, "Device requirements for optical interconnects to silicon chips," Proc. IEEE 97, 1166-1185 (2009).
  3. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, "Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect," Phys. Rev. Lett. 53, 2173-2176 (1984).
  4. S. Schmitt-Rink, D. S. Chemla, W. H. Knox, D. A. B. Miller, "How fast is excitonic electroabsorption?," Opt. Lett. 15, 60-62 (1990).
  5. T. H. Wood, "Multiple quantum well (MQW) waveguide modulators," J. Lightw. Technol. 6, 743-757 (1998).
  6. T. Ido, S. Tanaka, M. Suzuki, H. Inoue, "MQW electroabsorption optical modulator for 40 Gbit/s modulation," Electron. Lett. 31, 2124-2125 (1995).
  7. A. Ramdane, F. Devaux, N. Souli, D. Delprat, A. Ougazzaden, "Monolithic integration of multiple-quantum-well lasers and modulators for high-speed transmission," IEEE J. Sel. Top. Quantum Electron. 2, 326-335 (1996).
  8. R. Lewén, S. Irmscher, U. Westergren, L. Thylén, U. Eriksson, "Segmented transmission-line electroabsorption modulators," J. Lightw. Technol. 22, 172-179 (2004).
  9. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 437, 1334-1336 (2005).
  10. M. Virgilio, G. Grosso, "Quantum-confined stark effect in Ge–SiGe quantum wells: A tight-binding description," Phys. Rev. B 77, 165315 (2008).
  11. D. J. Paul, "8-band {\bf k}$\cdot{\bf p}$ modeling of the quantum confined stark effect in Ge quantum wells on Si substrates," Phys. Rev. B 77, 155323 (2008).
  12. R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, D. A. Miller, "Material properties of Si-Ge–Ge quantum wells," IEEE J. Sel. Topics Quantum Electron. 14, 1082-1089 (2008).
  13. P. Harrison, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (Wiley, 2009).
  14. C. G. Van de Walle, R. M. Martin, "Theoretical calculations of heterojunction discontinuities in the Si/Ge system," Phys. Rev. B 34, 5621-5634 (1986).
  15. C. G. Van de Walle, "Band lineups and deformation potentials in the model-solid theory," Phys. Rev. B 39, 1871-1883 (1989).
  16. E. Li, B. Weiss, K.-S. Chan, "Eigenstates and absorption spectra of interdiffused AlGaAs-GaAs multiple-quantum-well structures," IEEE J. Quantum Electron. 32, 1399-1416 (1996).
  17. V. V. Afanas'ev, A. Stesmans, L. Souriau, R. Loo, M. Meuris, "Valence band energy in confined Si$_{1-x}$Ge$_x$$(0.28 < x < 0.93)$ layers," Appl. Phys. Lett. 94, 172106 (2009).
  18. F. Tekia, M. Ferhat, A. Zaoui, "Band-gap bowing in ${\rm Si}_x{\rm Ge}_{1-x}$ alloy," Phys. B: Cond. Matt. 293, 183-186 (2000).
  19. D. F. Nelson, R. C. Miller, D. A. Kleinman, "Band nonparabolicity effects in semiconductor quantum wells," Phys. Rev. B 35, 7770-7773 (1987).
  20. M. Kahan, M. Chi, L. Friedman, "Infrared transitions in strained-layer Ge$_x$Si$_{1-x}$/Si," J. Appl. Phys. 75, 8012-8021 (1994).
  21. M. Fischetti, "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. I. Homogeneous transport," IEEE Trans. Electron. Devices 38, 634-649 (1991).
  22. M. Cardona, F. H. Pollak, "Energy-band structure of germanium and silicon: The ${\bf k}\cdot{\bf p}$ method," Phys. Rev. 142, 530-543 (1966).
  23. M. M. Rieger, P. Vogl, "Electronic-band parameters in strained $si1-xgex$ alloys on $si1-ygey$ substrates," Phys. Rev. B 48, 14 276-14 287 (1993).
  24. M. V. Fischetti, S. E. Laux, "Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys," J. Appl. Phys. 80, 2234-2252 (1996).
  25. K. Driscoll, R. Paiella, "Silicon-based injection lasers using electronic intersubband transitions in the $L$ valleys," Appl. Phys. Lett. 89, 191110 (2006).
  26. A. Valavanis, $n$-Type Silicon-Germanium Based Terahertz Quantum Cascade Lasers Ph.D. dissertation University of Leeds (2009).
  27. J. Weber, M. I. Alonso, "Near-band-gap photoluminescence of Si-Ge alloys," Phys. Rev. B 40, 5683-5693 (1989).
  28. A. Frova, P. Handler, F. A. Germano, D. E. Aspnes, "Electro-absorption effects at the band edges of silicon and germanium," Phys. Rev. 145, 575-583 (1966).
  29. S.-H. Wei, A. Zunger, "Predicted bandgap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends," Phys. Rev. B 60, 5404-5411 (1999).
  30. J. Liu, D. D. Cannon, K. Wada, Y. Ishikawa, D. T. Danielson, S. Jongthammanurak, J. Michel, L. C. Kimerling, "Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si(100)," Phys. Rev. B 70, 155309 (2004).
  31. L. D. Laude, F. H. Pollak, M. Cardona, "Effects of uniaxial stress on the indirect exciton spectrum of silicon," Phys. Rev. B 3, 2623-2636 (1971).
  32. S. L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995).
  33. H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 1990).
  34. B. K. Ridley, Quantum Processes in Semiconductors (Oxford Univ. Press, 1999).
  35. X. Q. Zhou, H. M. van Driel, G. Mak, "Femtosecond kinetics of photoexcited carriers in germanium," Phys. Rev. B 50, 5226-5230 (1994).
  36. B. Lax, J. G. Mavroides, "Statistics and galvanomagnetic effects in germanium and silicon with warped energy surfaces," Phys. Rev. 100, 1650-1657 (1955).
  37. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, W. Y. Jan, "Excitonic effects in coupled quantum wells," Phys. Rev. B 44, 6231-6242 (1991).
  38. N. Susa, "Improvement in electroabsorption and the effects of parameter variations in the three-step asymmetric coupled quantum well," J. Appl. Phys. 73, 932-942 (1993).
  39. D. Chemla, D. Miller, P. Smith, A. Gossard, W. Wiegmann, "Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures," IEEE J. Quantum Electron. QE-20, 265-275 (1984).
  40. C. Lange, N. S. Köster, S. Chatterjee, H. Sigg, D. Chrastina, G. Isella, H. von Känel, M. Schäfer, M. Kira, S. W. Koch, "Ultrafast nonlinear optical response of photoexcited Ge–SiGe quantum wells: Evidence for a femtosecond transient population inversion," Phys. Rev. B 79, 201306 (2009).
  41. A. McLean, C. Mitchell, D. Swanston, "Implementation of an efficient analytical approximation to the voigt function for photoemission lineshape analysis," J. Electron. Spectr. Related Phenom. 69, 125-132 (1994).
  42. L. Lever, Z. Ikonić, A. Valavanis, R. W. Kelsall, "Design of Ge–SiGe quantum-confined Stark effect modulators for CMOS compatible photonics," Proc. SPIE 7606, (2010).
  43. Y. Ishikawa, K. Wada, J. Liu, D. D. Cannon, H.-C. Luan, J. Michel, L. C. Kimerling, "Strain-induced enhancement of near-infrared absorption in Ge epitaxial layers grown on Si substrate," J. Appl. Phys. 98, 013501 (2005).
  44. M. Rouviere, M. Halbwax, J.-L. Cercus, E. Cassan, L. Vivien, D. Pascal, M. Heitzmann, J.-M. Hartmann, S. Laval, "Integration of germanium waveguide photodetectors for intrachip optical interconnects," Opt. Eng. 44, 075402 (2005).
  45. Y. Ishikawa, K. Wada, D. D. Cannon, J. Liu, H.-C. Luan, L. C. Kimerling, "Strain-induced bandgap shrinkage in Ge grown on Si substrate," Appl. Phys. Lett. 82, 2044-2046 (2003).
  46. J. M. Hartmann, A. Abbadie, A. M. Papon, P. Holliger, G. Rolland, T. Billon, J. M. Fédéli, M. Rouvière, L. Vivien, S. Laval, "Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-$\mu$m photodetection," J. Appl. Phys. 95, 5905-5913 (2004).
  47. E. Peiner, A. Guttzeit, H.-H. Wehmann, "The effect of threading dislocations on optical absorption and electron scattering in strongly mismatched heteroepitaxial IIIV compound semiconductors on silicon," J. Phys.: Conden. Matt. 14, 13195 (2002).
  48. J. S. H. Yu-Hsuan Kuo, Thin Buffer Layer for SiGe Growth on Mis-Matched Substrates US Patent 077 734 (2007).
  49. C. Lam, Passive Optical Networks Principles and Practice (Elsevier, 2007).
  50. D. J. Paul, "Si/SiGe heterostructures: From material and physics to devices and circuits," Semicond. Sci. Technol. 19, R75R108 (2004).
  51. J. E. Roth, O. Fidaner, E. H. Edwards, R. K. Schaevitz, Y.-H. Kuo, N. C. Helman, T. I. Kamins, J. S. Harris, D. A. B. Miller, "C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing," Electron. Lett. 44, (2008).
  52. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, "Quantum-confined stark effect in Ge–SiGe quantum wells on Si for optical modulators," IEEE J. Sel. Topics Quantum Electron. 12, 1503-1513 (2006).
  53. R. Braunstein, A. R. Moore, F. Herman, "Intrinsic optical absorption in germanium-silicon alloys," Phys. Rev. 109, 695-710 (1958).
  54. W. L. Bloss, "Linewidths of quantum well eigenstates with finite barriers," Superlattices Microstruct. 7, 63-67 (1990).
  55. D. Y. K. Ko, J. C. Inkson, "Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems," Phys. Rev. B 38, 9945-9951 (1988).
  56. D. J. Dunstan, "Strain and strain relaxation in semiconductors," J. Materi. Sci.: Mater. Electron. 8, 337-375 (1997).
  57. M. E. Brenchley, M. Hopkinson, A. Kelly, P. Kidd, D. J. Dunstan, "Coherency strain as an athermal strengthening mechanism," Phys. Rev. Lett. 78, 3912-3914 (1997).
  58. Comsol Multiphysics, www.comsol.com.
  59. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W.," Appl. Opt. 24, 4493 (1985).
  60. M. E. Chin, W. S. C. Chang, "Theoretical design optimization of multiple-quantum-well electroabsorption waveguide modulators," IEEE J. Quantum Electron. 29, 2476-2488 (1993).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited