OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 4 — Feb. 15, 2010
  • pp: 443–447

Tunable Parametric All-Fiber Short-Wavelength IR Transmitter

J. M. Chavez Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, and S. Radic

Journal of Lightwave Technology, Vol. 28, Issue 4, pp. 443-447 (2010)

View Full Text Article

Acrobat PDF (153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, the performance of an all-fiber short-wave IR (SWIR) transmitter with wideband tunability and high peak power is reported. Transmitter construction relied on parametric process in highly nonlinear fiber to convert a seed laser at 1260 nm to 2155 nm SWIR channel with record 39dB efficiency and translation over 900 nm spectral range. We demonstrated 61W of peak converted power at 2 $\mu$m and 26 W at 2.15$\mu$m. Efficient conversion was made possible by engineered fourth-order dispersion of the highly nonlinear fiber and construction of a low-noise pump source in a 1550 nm band.

© 2010 IEEE

J. M. Chavez Boggio, S. Moro, B. P.-P. Kuo, N. Alic, B. Stossel, and S. Radic, "Tunable Parametric All-Fiber Short-Wavelength IR Transmitter," J. Lightwave Technol. 28, 443-447 (2010)

Sort:  Year  |  Journal  |  Reset


  1. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer-Verlag, 2005).
  2. D. Stothard, M. Dunn, C. Rae, "Hyperspectral imaging of gases with a continuous-wave pump enhanced optical parametric oscillator," Opt. Exp. 12, 947-955 (2004).
  3. V. W. S. Chan, "Free-space optical communications," J. Lightw. Technol. 24, 4750-4762 (2006).
  4. C. Langrock, M. M. Fejer, "Fiber-feedback continuous-wave and synchronously-pumped singly resonant ring optical parametric oscillators using reverse-proton-exchanged periodically-poled lithium niobate waveguides," Opt. Lett. 32, 2263-2265 (2007).
  5. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. Bliss, D. Weyburne, "Optical parametric generation of a midinfrared continuum in orientation-patterned GaAs," Opt. Lett. 31, 71-73 (2006).
  6. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, E. Lallier, "Optical parametric oscillation in quasi-phase-matched GaAs," Opt. Lett. 29, 1912-1914 (2004).
  7. J. M. C. Boggio, J. R. Windmiller, M. Knutzen, R. Jiang, C. Bres, N. Alic, B. Stossel, K. Rottwitt, S. Radic, "730-nm optical parametric conversion from near to short wave infrared band," Opt. Exp. 16, 5435-5443 (2008).
  8. A. V. Shakhanov, K. M. Golant, A. N. Perov, S. D. Rumyantsev, A. G. Shebunyaev, I. I. Cheremisin, S. A. Popov, "All-silica optical fibers with reduced losses beyond two microns," Proc. SPIE 1893, 85-89 (1993).
  9. J. D. Shephard, W. N. MacPherson, R. R. J. Maier, J. D. C. Jones, D. P. Hand, M. Mohebbi, A. K. George, P. J. Roberts, J. C. Knight, "Single-mode midIR guidance in a hollow-core photonic crystal fiber," Opt. Exp. 13, 7139-7144 (2005).
  10. J. M. Dudley, G. Genty, S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Modern Phys. 78, 1135-1184 (2006).
  11. A. Mussot, E. Lants, H. Maillotte, T. Sylvestre, C. Finot, S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Exp. 12, 2838-2843 (2004).
  12. J. M. C. Boggio, H. L. Fragnito, "Simple four-wave mixing based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers," J. Opt. Soc. Amer. B, Opt. Phys. 24, 2046-2054 (2007).
  13. Y. J. Chen, "4-wave mixing in optical fibers: Exact solution," J. Opt. Soc. Amer. B, Opt. Phys. 6, 1986-1993 (1989).
  14. M. E. Marhic, G. M. Williams, L. Goldberg, J.-M. Delavaux, Proc. SPIE, Nonlinear frequency generation and conversion: Materials, devices, and applications (2006) pp. 165-176.
  15. J. M. C. Boggio, P. Dainese, F. Karlsson, H. L. Fragnito, "88% efficient two pump fiber parametric amplifier," IEEE Photon. Tech. Lett. 18, 1825-1827 (2003).
  16. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, J. D. Harvey, "Combined effect of Raman and parametric gain on single-pump parametric amplifiers," Opt. Exp. 15, 8104-8114 (2007).
  17. K. J. Blow, D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
  18. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, E. M. Dianov, "Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 26, 1815-1820 (1990).
  19. F. Vanholsbeeck, P. Emplit, S. Coen, "Complete experimental characterization of the influence of parametric four-wave mixing on stimulated Raman gain," Opt. Lett. 28, 1960-1962 (2003).
  20. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, H. A. Haus, "Raman response function of silica-core fibers," J. Opt. Soc. Amer. B, Opt. Phys. 6, 1159-1167 (1989).
  21. J. M. C. Boggio, J. D. Marconi, S. R. Bickham, H. L. Fragnito, "Spectrally flat and broadband double-pumped fiber optical parametric amplifiers," Opt. Exp. 15, 5288-5309 (2007).
  22. M. Hirano, T. Nakanishi, T. Okunko, M. Onishi, "Selective FWM-based wavelength conversion realized by highly nonlinear fiber," Eur. Conf. Opt. Commun. (ECOC) CannesFrance (2006).
  23. J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, K. Vogel, "Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators," Opt. Exp. 15, 1474-1479 (2007).
  24. G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Exp. 15, 2947-2952 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited