OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 4 — Feb. 15, 2010
  • pp: 502–519

Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing

Ezra M. Ip and Joseph M. Kahn

Journal of Lightwave Technology, Vol. 28, Issue 4, pp. 502-519 (2010)


View Full Text Article

Acrobat PDF (795 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Next-generation optical fiber systems will employ coherent detection to improve power and spectral efficiency, and to facilitate flexible impairment compensation using digital signal processors (DSPs). In a fully digital coherent system, the electric fields at the input and the output of the channel are available to DSPs at the transmitter and the receiver, enabling the use of arbitrary impairment precompensation and postcompensation algorithms. Linear time-invariant (LTI) impairments such as chromatic dispersion and polarization-mode dispersion can be compensated by adaptive linear equalizers. Non-LTI impairments, such as laser phase noise and Kerr nonlinearity, can be compensated by channel inversion. All existing impairment compensation techniques ultimately approximate channel inversion for a subset of the channel effects. We provide a unified multiblock nonlinear model for the joint compensation of the impairments in fiber transmission. We show that commonly used techniques for overcoming different impairments, despite their different appearance, are often based on the same principles such as feedback and feedforward control, and time-versus-frequency-domain representations. We highlight equivalences between techniques, and show that the choice of algorithm depends on making tradeoffs.

© 2010 IEEE

Citation
Ezra M. Ip and Joseph M. Kahn, "Fiber Impairment Compensation Using Coherent Detection and Digital Signal Processing," J. Lightwave Technol. 28, 502-519 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-4-502


Sort:  Year  |  Journal  |  Reset

References

  1. J. M. Kahn, A. H. Gnauck, J. J. Veselka, S. K. Korotky, B. L. Kasper, "4-Gb/s PSK homodyne transmission system using phase-locked semiconductor lasers," IEEE Photon. Technol. Lett. 2, 285-287 (1990).
  2. J. M. Kahn, A. M. Porter, U. Padan, "Heterodyne detection of 310-Mb/s quadriphase-shift keying using fourth-power optical phase-locked loop," IEEE Photon. Technol. Lett. 4, 1397-1399 (1992).
  3. H. Sun, K.-T. Wu, K. Roberts, "Real-time measurement of a 40-Gb/s coherent system," Opt. Exp. 16, 873-879 (2008).
  4. E. Ip, A. P. T. Lau, D. J. F. Barros, J. M. Kahn, "Coherent detection in optical fiber systems," Opt. Exp. 16, 753-791 (2008).
  5. S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, N. S. Bergano, "Polarization multiplexing with solitons," J. Lightw. Technol. 10, 28-35 (1992).
  6. J. P. Gordon, H. Kogelnik, "PMD fundamentals: Polarization mode dispersion in optical fibers," Proc. Nat. Acad. Sci. 97, 4541-4550 (2000).
  7. J. H. Lee, M. S. Kim, Y. C. Chung, "Statistical PMD emulator using variable DGD elements," IEEE Photon Technol. Lett. 15, 54-56 (2003).
  8. E. Ip, J. M. Kahn, "Power spectra of return-to-zero optical signals," J. Lightw. Technol. 24, 1610-1618 (2006).
  9. T. M. Cover, J. A. Thomas, Elements of Information Theory (Wiley, 1991).
  10. J. Armstrong, "OFDM for optical communications," J. Lightw. Technol. 27, 189-204 (2009).
  11. D. J. F. Barros, J. M. Kahn, "Optimized dispersion compensation using orthogonal frequency-division multiplexing," J. Lightw. Technol. 26, 2889-2898 (2008).
  12. B. Widrow, S. D. Stearn, Adaptive Signal Processing (Prentice-Hall, 1985).
  13. E. Ip, J. M. Kahn, "Digital equalization of chromatic dispersion and polarization mode dispersion," J. Lightw. Technol. 25, 2033-2043 (2007).
  14. S. U. H. Qureshi, "Adaptive equalization," Proc. IEEE 73, 1349-1387 (1985).
  15. R. D. Gitlin, S. B. Weinstein, "Fractionally spaced equalization: An improved digital transversal equalizer," Bell Syst. Tech. J. 60, 275-296 (1981).
  16. A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing .
  17. S. Haykin, Adaptive Filter Theory (Prentice-Hall, 2002).
  18. D. N. Godard, "Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans. Commun. COM-28, 1867-1875 (1980).
  19. A. Leven, N. Kaneda, Y.-K. Chen, "A real-time CMA-based 10 Gb/s polarization demultiplexing coherent receiver implemented in an FPGA," pt. Fiber Commun. Conf. San DiegoCA (2008) paper OTuO2.
  20. J. Yang, J.-J. Werner, G. A. Dumont, "The multimodulus blind equalization and its generalized algorithms," IEEE J. Sel. Areas Commun. 20, 997-1015 (2002).
  21. S. Abrar, "Compact constellation algorithm for blind equalization of QAM signals," Proc. Int. Netw. Commun. Conf. (2004) pp. 170-174.
  22. Y. Chen, T. Le-Ngoc, B. Champagne, C. Xu, "Recursive least squares constant modulus algorithm for blind adaptive array," IEEE Trans. Signal Process. 52, 1452-1456 (2004).
  23. J. J. Shynk, "Frequency-domain multirate adaptive filtering," IEEE Signal Process. Mag. 9, 14-37 (1992).
  24. M. Kuschnerov, F. N. Hauske, K. Piyawanno, B. Spinnler, A. Napoli, B. Lankl, "Adaptive chromatic dispersion equalization for non-dispersion managed coherent systems," Opt. Fiber Commun. Conf. San DiegoCA (2009) paper OMT1.
  25. D. Mansour, A. H. Gray, "Unconstrained frequency-domain adaptive filter," IEEE Trans. Acoust. Speech Signal Process. ASSP-30, 726-734 (1982).
  26. J. S. Soo, K. K. Pang, "Multidelay block frequency domain adaptive filter," IEEE Trans. Acoust. Speech Signal Process. 38, 373-376 (1990).
  27. S. J. Savory, "Digital filters for coherent optical receivers," Opt. Exp. 16, 804-817 (2008).
  28. S. J. Savory, G. Gavioli, R. I. Killey, P. Bayvel, "Transmission of 42.8 Gbit/s polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation," Opt. Fiber Commun. Conf. AnaheimCA (2007) paper OTuA1.
  29. G. Charlet, M. Salsi, P. Tran, M. Bertolini, H. Mardoyan, J. Renaudier, O. Bertran-Pardo, S. Bigo, "72 $\times$ 100 Gb/s transmission over transoceanic distance, using large effective area fiber, hybrid Raman-Erbium amplification and coherent detection," Opt. Fiber Commun. Conf. San DiegoCA (2009) paper PDPB6.
  30. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice-Hall, 1998).
  31. J. R. Barry, J. M. Kahn, "Carrier synchronization for homodyne and heterodyne detection of optical quadriphase-shift keying," J. Lightw. Technol. 10, 1939-1951 (1992).
  32. S. Norimatsu, K. Iwashita, "Linewidth requirements for optical synchronous detection systems with nonnegligible loop delay time," J. Lightw. Technol. 10, 341-349 (1992).
  33. E. Ip, J. M. Kahn, "Carrier synchronization for 3- and 4-bit-per-symbol optical transmission," J. Lightw. Technol. 23, 4110-4124 (2005).
  34. E. Ip, J. M. Kahn, "Feedforward carrier recovery for coherent optical communications," J. Lightw. Technol. 25, 2675-2692 (2007).
  35. S. Tsukamoto, K. Katoh, K. Kikuchi, "Coherent demodulation of optical multilevel phase-shift-keying signals using homodyne detection and digital signal processing," IEEE Photon. Technol. Lett. 18, 1131-1133 (2006).
  36. M. G. Taylor, "Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments," IEEE Photon. Technol. Lett. 16, 674-676 (2004).
  37. A. J. Viterbi, A. M. Viterbi, "Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission," IEEE Trans. Inf. Theory IT-29, 543-551 (1983).
  38. C. Xie, "Local oscillator phase noise induced penalties in optical coherent detection systems using electronic chromatic dispersion compensation," Opt. Fiber Commun. Conf. San DiegoCA (2009) paper OMT4.
  39. W. Shieh, K.-P. Ho, "Equalization-enhanced phase noise for coherent-detection systems using electronic digital signal processing," Opt. Exp. 16, 15718-15727 (2008).
  40. A. Tarighat, R. C. J. Hsu, A. H. Sayed, B. Jalali, "Digital adaptive phase noise reduction in coherent optical links," J. Lightw. Technol. 24, 1269-1276 (2006).
  41. I. Fatadin, D. Ives, S. Savory, "Blind equalization and carrier phase recovery in 16-QAM optical coherent system," J. Lightw. Technol. .
  42. S. Wu, Y. Bar-Ness, "OFDM systems in the presence of phase noise: Consequences and solutions," IEEE Trans. Commun. 52, 1988-1996 (2004).
  43. P. P. Mitra, J. B. Stark, "Nonlinear limits to the information capacity of optical fiber communications," Nature 411, 1027-1030 (2001).
  44. R.-J. Essiambre, G. J. Foschini, P. J. Winzer, G. Kramer, E. C. Burrows, "The capacity of fiber-optic communication systems," Opt. Fiber Commun. Conf. San DiegoCA (2008) paper OTuE1.
  45. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
  46. J. P. Gordon, L. F. Mollenauer, "Phase noise in photonic communications systems using linear amplifiers," Opt. Lett. 15, 1351-1353 (1990).
  47. P. P. Mitra, J. B. Stark, "Nonlinear limits to the information capacity of optical fiber communications," Nature 411, 1027-1030 (2001).
  48. J. M. Kahn, K.-P. Ho, "Spectral efficiency limits and modulation/detection techniques for DWDM systems," IEEE J. Sel. Topics Quantum Electron. 10, 259-272 (2004).
  49. R.-J. Essiambre, G. J. Foschini, P. J. Winzer, G. Kramer, E. C. Burrows, "The capacity of fiber-optic communication systems," Opt. Fiber Commun. Conf. San DiegoCA (2009) paper OTuE17.
  50. R.-J. Essiambre, G. J. Foschini, P. J. Winzer, G. Kramer, "Exploring capacity limits of fibre-optic communication systems," Eur. Conf. Opt. Commun. BrusselsBelgium (2006) paper We1.E.1.
  51. A. Chowdhury, R.-J. Essiambre, "Optical phase conjugation and pseudolinear transmission," Opt. Lett. 29, 1105-1107 (2004).
  52. K.-P. Ho, J. M. Kahn, "Electronic compensation technique to mitigate nonlinear phase noise," J. Lightw. Technol. 22, 779-783 (2004).
  53. K. Kikuchi, M. Fukase, S. Kim, "Electronic post-compensation for nonlinear phase noise in a 1000-km 20-Gb/s optical QPSK transmission system using the homodyne receiver with digital signal processing," Opt. Fiber Commun. Conf. Los AngelesCA (2007) paper OTuA2.
  54. G. Charlet, N. Maaref, J. Renaudier, H. Mardoyan, P. Tran, S. Bigo, "Transmission of 40 Gb/s QPSK with coherent detection over ultra-long distance improved by nonlinearity mitigation," Eur. Conf. Optical Commun. CannesFrance (2006) paper Th4.3.4.
  55. E. Ip, J. M. Kahn, "Compensation of dispersion and nonlinear impairments using digital backpropagation," J. Lightw. Technol. 26, 3416-3425 (2008).
  56. K. Roberts, C. Li, L. Strawczynski, M. O'Sullivan, I. Hardcastle, "Electronic precompensation of optical nonlinearity," IEEE Photon. Technol. Lett. 18, 403-405 (2006).
  57. R.-J. Essiambre, P. J. Winzer, X. Q. Qang, W. Lee, C. A. White, E. C. Burrows, "Electronic predistortion and fiber nonlinearity," IEEE Photon. Technol. Lett. 18, 1804-1806 (2006).
  58. E. Inuzuka, E. Yamazaki, K. Yonenaga, A. Takada, "Performance of nonlinear interchannel crosstalk pre-compensation at zero-dispersion wavelength using carrier phase-locked WDM," Electron. Lett. 43, 729-730 (2007).
  59. E. Mateo, L. Zhu, G. Li, "Impact of XPM and FWM on the digital implementation of impairment compensation for WDM transmission using backward propagation," Opt. Exp. 16, 16124-16137 (2008).
  60. A. J. Lowery, "Fiber nonlinearity mitigation in optical links that use OFDM for dispersion compensation," IEEE Photon. Technol. Lett. 19, 1556-1558 (2007).
  61. W. Shieh, X. Yi, Y. Ma, Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Exp. 15, 9936-9947 (2007).
  62. A. J. Lowery, "Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM," Opt. Exp. 15, 12965-12970 (2007).
  63. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  64. O. V. Sinkin, R. Holzlöhner, J. Zweck, C. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communication systems," J. Lightw. Technol. 21, 61-68 (2003).
  65. Q. Zhang, M. I. Hayee, "Symmetrized split-step Fourier scheme to control global simulation accuracy in fiber-optic communication systems," J. Lightw. Technol. 26, 302-316 (2008).
  66. G. Goldfarb, G. Li, "Efficient backward-propagation using wavelet-based filtering for fiber backward-propagation," Opt. Exp. 17, 8815-8821 (2009).
  67. X. Liu, R. W. Tkach, "Joint SPM compensation for inline-dispersion-compensated 112-Gb/s PDM-OFDM transmission," Opt. Fiber Commun. Conf. San DiegoCA (2009) paper OTuO5.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited