OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 4 — Feb. 15, 2010
  • pp: 526–538

An Optical Phase-Locked Loop Photonic Integrated Circuit

Sasa Ristic, Ashish Bhardwaj, Mark J. Rodwell, Larry A. Coldren, and Leif A. Johansson

Journal of Lightwave Technology, Vol. 28, Issue 4, pp. 526-538 (2010)


View Full Text Article

Acrobat PDF (3364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present the design, fabrication, and results from the first monolithically integrated optical phase-locked loop (OPLL) photonic integrated circuit (PIC) suitable for a variety of homodyne and offset phase locking applications. This InP-based PIC contains two sampled-grating distributed reflector (SG-DBR) lasers, semiconductor optical amplifiers (SOAs), phase modulators, balanced photodetectors, and multimode interference (MMI)-couplers and splitters. The SG-DBR lasers have more than 5 THz of frequency tuning range and can generate a coherent beat for a wide spectrum of frequencies. In addition, the SG-DBR lasers have large tuning sensitivities and do not exhibit any phase inversion over the frequency modulation bandwidths making them ideal for use as current controlled oscillators in feedback loops. These SG-DBR lasers have wide linewidths and require high feedback loop bandwidths in order to be used in OPLLs. This is made possible using photonic integration which provides low cost, easy to package compact loops with low feedback latencies. In this paper, we present two experiments to demonstrate proof-of-concept operation of the OPLL-PIC: homodyne locking and offset locking of the SG-DBR lasers.

© 2010 IEEE

Citation
Sasa Ristic, Ashish Bhardwaj, Mark J. Rodwell, Larry A. Coldren, and Leif A. Johansson, "An Optical Phase-Locked Loop Photonic Integrated Circuit," J. Lightwave Technol. 28, 526-538 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-4-526


Sort:  Year  |  Journal  |  Reset

References

  1. L. H. Enloe, J. L. Rodda, "Laser phase-locked loop," Proc. IEEE 53, 165-166 (1965).
  2. L. N. Langley, M. D. Elkin, C. Edge, M. J. Wale, U. Gliese, X. Huang, A. J. Seeds, "Packaged semiconductor laser optical phase-locked loop (OPLL) for photonic generation, processing and transmission of microwave signals," IEEE Trans. Microw. Theory Technol. 47, 1257-1264 (1999).
  3. N. Satyan, W. Liang, A. Kewitsch, G. Rakuljic, A. Yariv, "Coherent power combination of semiconductor lasers using optical phase-lock loops," IEEE J. Sel. Topics Quantum Electron. 15, 240-247 (2009).
  4. A. J. Seeds, K. J. Williams, "Microwave photonics," J. Lightw. Technol. 24, 4628-4641 (2006).
  5. W. R. Leeb, H. K. Philipp, A. L. Scholtz, "Homodyne receiver for ASK signals at 10-$\mu$m wavelength," Appl. Opt. 23, 523-524 (1984).
  6. J. M. Kahn, "1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers," IEEE Photon. Technol. Lett. 1, 340-342 (1989).
  7. J. M. Kahn, A. M. Porter, U. Padan, "Heterodyne detection of 310-Mb/s quadriphase-shift keying using fourth-power optical phase-locked loop," IEEE Photon. Technol. Lett. 4, 1397-1400 (1992).
  8. H. K. Philipp, A. L. Scholtz, E. Bonek, W. R. Leeb, "Costas loop experiments for a 10.6 $\mu$m communications receiver," IEEE Trans. Commun. COM-31, 1000-1002 (1983).
  9. T. von Lerber, S. Honkanen, A. Tervonen, H. Ludvigsen, F. Küppers, "Optical clock recovery methods: Review," Optical Fiber Technol. 15, 363-372 (2009).
  10. P. G. Goetz, H. Eisele, K. C. Syao, P. Bhattacharya, "1.55-$\mu$m optical phase-locked loop with integrated $p$-$i$-$n$/HBT photoreceiver in a flexible development platform," Microw. Opt. Technol. Lett. 15, 4-7 (1997).
  11. N. Satyan, W. Liang, A. Yariv, "Coherence cloning using semiconductor laser optical phase-lock loops," IEEE J. Quantum Electron. 45, 755-761 (2009).
  12. R. C. Steele, "Optical phase-locked loop using semiconductor laser diodes," Electron. Lett. 19, 69-71 (1983).
  13. B. Cai, A. J. Seeds, A. Rivers, J. S. Roberts, "Multiple quantum well-tuned GaAs/AlGaAs laser," Electron. Lett. 25, 145-146 (1989).
  14. R. T. Ramos, A. J. Seeds, "Fast heterodyne optical phase-lock loop using double quantum well laser diodes," Electron. Lett. 28, 82-83 (1992).
  15. L. A. Johansson, A. J. Seeds, "Millimeter-wave modulated optical signal generation with high spectral purity and wide locking bandwidth using a fiber-integrated optical phase-lock loop," IEEE Photon. Technol. Lett. 12, 690-692 (2000).
  16. W. Liang, A. Yariv, A. Kewitsch, G. Rakuljic, "Coherent combining of the output of two semiconductor lasers using optical phase-lock loops," Opt. Lett. 32, 370-372 (2007).
  17. U. Gliese, T. N. Nielsen, M. Bruun, E. L. Christensen, K. E. Stubkjær, S. Lindgren, B. Broberg, "A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers," IEEE Photon. Technol. Lett. 4, 936-938 (1992).
  18. M. Kourogi, C.-H. Shin, M. Ohtsu, "A wideband heterodyne optical phase-locked loop for generation of 3–18 GHz microwave carriers," IEEE Photon. Technol. Lett. 3, 270-272 (1991).
  19. X. Huang, A. J. Seeds, J. S. Roberts, A. P. Knights, "Monolithically integrated quantum-confined stark effect tuned laser with uniform frequency response," IEEE Photon. Technol. Lett. 10, 1697-1699 (1998).
  20. S. Kobayashi, Y. Yamamoto, M. Ito, T. Kimura, "Direct frequency modulation in AlGaAs semiconductor lasers," IEEE J. Quantum Electron. 18, 582-595 (1982).
  21. P. Correc, O. Girard, I. F. de Faria, Jr."On the thermal contribution to the FM response of DFB lasers: Theory and experiment," IEEE J. Quantum Electron. 30, 2485-2490 (1994).
  22. M. Okai, M. Suzuki, M. Aoki, "Complex-coupled $\lambda/4$ shifted DFB lasers with a flat FM response," IEEE J. Sel. Topics Quantum Electron. 1, 461-465 (1995).
  23. M. Öberg, S. Nilsson, T. Klinga, P. Ojala, "A three-electrode distributed Bragg reflector laser with 22 nm wavelength tuning range," IEEE Photon. Technol. Lett. 3, 299-301 (1991).
  24. M. Pantouvaki, C. C. Renaud, P. Cannard, M. J. Robertson, R. Gwilliam, A. J. Seeds, "Fast tunable InGaAsP DBR laser using quantum-confined Stark-effect-induced refractive index change," IEEE J. Sel. Topics Quantum Electron. 13, 1112-1121 (2007).
  25. U. Gliese, E. L. Christensen, K. E. Stubkjær, "Laser linewidth requirements and improvements for coherent optical beam forming networks in satellites," J. Lightw. Technol. 9, 779-790 (1991).
  26. N. Satyan, "Phase-controlled apertures using heterodyne optical phase-locked loops," IEEE Photon. Technol. Lett. 20, 897-899 (2008).
  27. J. W. Raring, M. N. Sysak, A. T. Pedretti, M. Dummer, E. J. Skogen, J. S. Barton, S. P. DenBaars, L. A. Coldren, "Advanced integration schemes for high-functionality/high-performance photonic integrated circuits," Proc. SPIE San JoseCA (2006) Paper 61260H.
  28. F. Aflatouni, O. Momeni, H. Hashemi, "A heterodyne phase locked loop with GHz acquisition range for coherent locking of semiconductor lasers in 0.13 $\mu$m CMOS," Proc. IEEE Custom Integr. Circuits Conf. (CICC) (2007) pp. 463-466.
  29. M. Bruun, U. Gliese, A. K. Petersen, T. N. Nielsen, K. E. Stubkjær, "A 2–10 GHz GaAs MMIC opto-electronic phase detector for optical microwave signal generators," Microw. J. 37, 94-100 (1994).
  30. M. L. Majewski, J. Barton, L. A. Coldren, Y. Akulova, M. C. Larson, "Direct intensity modulation in sampled-grating DBR lasers," IEEE Photon. Technol. Lett. 14, 747-749 (2002).
  31. J. Leuthold, C. H. Joyner, "Multimode interference couplers with tunable power splitting ratios," J. Lightw. Technol. 19, 700-707 (2001).
  32. J. Klamkin, Coherent integrated receiver for highly linear microwave photonic links Ph.D. dissertation Materials Dept. Univ. CaliforniaSanta Barbara (2008).
  33. M. N. Sysak, L. A. Johansson, J. W. Raring, M. J. Rodwell, L. A. Coldren, J. E. Bowers, "A high efficiency, current injection based quantum-well phase modulator monolithically integrated with a tunable laser for coherent systems," Opt. Amplifiers Their Appl./Coherent Opt. Technol. Appl. Techn. Dig. (CD) (Opt. Soc. Amer.) (2006).
  34. J. S. Barton, E. J. Skogen, M. L. Mašanović, S. P. Denbaars, L. A. Coldren, "A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator," IEEE J. Sel. Topics Quantum Electron. 9, 1113-1117 (2003).
  35. L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Sel. Topics Quantum Electron. 6, 988-999 (2000).
  36. J. S. Barton, The integration of Mach-Zehnder modulators with sampled grating DBR lasers Ph.D. dissertation Materials Dept. Univ. CaliforniaSanta Barbara (2004).
  37. M. L. Mašanović, Wavelength-agile photonic integrated circuits for all-optical wavelength conversion Ph.D. dissertation Dept. Elect. Comput. Eng. Univ. CaliforniaSanta BarbaraCA (2004).
  38. E. V. K. Rao, Y. Gottesman, M. Allovon, E. Vergnol, D. Sigogne, A. Talneau, H. Sik, S. Slempkes, B. Theys, J. Chevallier, "A significant reduction of propagation losses in InGaAsP—InP buried-stripe waveguides by hydrogenation," IEEE Photon. Technol. Lett. 10, 370-372 (1998).
  39. S. Nakagawa, G. Fish, G. A. Dahl, P. Koh, C. Schow, M. Mack, L. Wang, R. Yu, "Phase noise of widely-tunable SG-DBR laser," Opt. Fiber Commun. Conf. (OFC) (Trends in Optics and Photonics Series Vol. 86) Tech. Dig. (IEEE Cat. 03CH37403). Opt. Soc. Amer. (2003) pp. 461-462.
  40. F. M. Gardner, Phaselock Techniques (Wiley, 2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited