OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 4 — Feb. 15, 2010
  • pp: 547–556

Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM

P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl

Journal of Lightwave Technology, Vol. 28, Issue 4, pp. 547-556 (2010)


View Full Text Article

Acrobat PDF (1733 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We discuss the generation, wavelength-division-multiplexed (WDM) long-haul transmission, and coherent detection of 112-Gb/s polarization-division-multiplexed (PDM) 16-ary quadrature amplitude modulation (16-QAM) at a line rate of 14 Gbaud and spectral efficiencies beyond 4 b/s/Hz. We describe the (off-line) digital signal processing and blind filter adaptation algorithms used in our intradyne receiver and characterize its performance using both simulated and measured 16-QAM waveforms. We measure a required optical signal-to-noise ratio of 20.2 dB (0.1-nm reference bandwidth; $10^{-3}$ bit-error ratio), 3.2-dB off the theoretical limit. We study the effects of finite analog-to-digital converter resolution, laser frequency offset, laser phase noise, and narrowband optical filtering. Our experiments on a 25-GHz WDM grid (4.1-b/s/Hz spectral efficiency) reveal a 1-dB penalty after 7 passes though reconfigurable optical add/drop multiplexers (ROADMs) and an achievable transmission reach of 1022 km of uncompensated standard single-mode fiber. At a spectral efficiency of 6.2 b/s/Hz (16.67-GHz WDM channel spacing) a transmission reach of 630 km is attained.

© 2010 IEEE

Citation
P. J. Winzer, A. H. Gnauck, C. R. Doerr, M. Magarini, and L. L. Buhl, "Spectrally Efficient Long-Haul Optical Networking Using 112-Gb/s Polarization-Multiplexed 16-QAM," J. Lightwave Technol. 28, 547-556 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-4-547


Sort:  Year  |  Journal  |  Reset

References

  1. R. W. Tkach, "Scaling optical communications for the next decade and beyond," Bell Labs. Tech. J. (2010) to appear in.
  2. P. J. Winzer, R.-J. Essiambre, "Advanced optical modulation formats," Proc. IEEE 94, 952-985 (2006).
  3. R. A. Griffin, A. C. Carter, "Optical differential quadrature phase shift keying (oDQPSK) for high-capacity optical transmission," Proc. OFC (2002) pp. 367-368.
  4. A. H. Gnauck, G Charlet, P. Tran, P. J. Winzer, C. R. Doerr, J. C. Centanni, E. C. Burrows, T. Kawanishi, T. Sakamoto, K. Higuma, "25.6-Tb/s WDM transmission of polarization-multiplexed RZ-DQPSK signals," J. Lightw. Technol. 26, 79-84 (2008).
  5. A. H. Gnauck, P.J. Winzer, C. Dorrer, S. Chandrasekhar, "Linear and nonlinear performance of 42.7-Gb/s single-polarization RZ-DQPSK format," Photonics Technology Letters 18, 883-885 (2006).
  6. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E.-D. Schmidt, T. Wuth, J Geyer, E. De Man, G.-D. Khoe, H. de Waardt, "Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission," J. Lightw. Technol. 26, 64-72 (2008).
  7. P. J. Winzer, "Modulation and multiplexing in optical communication systems," LEOS Newsletter (2009) http://www.ieee.org/organizations/pubs/newsletters/leos/feb09/index.html on-line at.
  8. R.-J. Essiambre, G. J. Foschini, G. Kramer, P. J. Winzer, "Capacity limits of fiber-optic networks," Phys. Rev. Lett. 101, 163901 (2008).
  9. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel, "Foundations for determining capacity limits of fibers," J. Lightw. Technol. (2009) accepted for publication.
  10. M. Nakazawa, "Optical quadrature amplitude modulation (QAM) with coherent detection up to 128 states," Proc. OFC'09 (2009).
  11. H. Takahashi, A. Al Amin, S. Jansen, I. Morita, H. Tanaka, "Highly Spectrally Efficient DWDM Transmission at 7.0 bit/s/Hz using 8 x 65.1-Gbit/s Coherent PDM-OFDM," J. Lightw. Technol. 28, (2010).
  12. X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, P. Magill, "8$\,\times\,$114 Gb/s, 25-GHz-spaced, PolMux-RZ-8PSK transmission over 640 km of SSMF employing digital coherent detection and EDFA-only amplification," Proc. OFC (2008).
  13. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H. Matthew, S. Mishra, "Transmission of 32-Tb/s Capacity Over 580km Using RZ-Shaped PDM-8QAM Modulation Format and Cascaded Multi-Modulus Blind Equalization Algorithm," J. Lightw. Technol. 28, (2010).
  14. P. J. Winzer, A. H. Gnauck, "112-Gb/s polarization-multiplexed 16-QAM on a 25-GHz WDM grid," Proc. ECOC (2008).
  15. A. H. Gnauck, P. J. Winzer, C. R. Doerr, L. L. Buhl, "10$\,\times\,$112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency," Proc. OFC'09 (2009).
  16. A. H. Gnauck, P. J. Winzer, "10$\,\times\,$112-Gb/s PDM 16-QAM transmission over 1022 km of SSMF with a spectral efficiency of 4.1 b/s/Hz and without optical filtering," Proc. ECOC'09 (2009).
  17. J. R. Treichler, M. G. Larimore, J. C. Harp, "Practical blind demodulators for high-order QAM signals," Proc. IEEE 86, 1907-1926 (1998).
  18. C. R. Johnson, P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, R. A. Casas, "Blind equalization using the constant modulus criterion: A review," Proc. IEEE 86, 1927-1950 (1998).
  19. N. K. Jablon, "Joint blind equalization, carrier recovery, and timing recovery for high-order QAM signal constellations," IEEE Trans. Signal Process. 40, 1383-1398 (1992).
  20. S. J. Savory, "Digital filters for coherent optical receivers," Opt. Exp. 16, 804-817 (2008).
  21. J. Yang, J.-J. Werner, G.A. Dumont, "The multimodulus blind equalization and its generalized algorithms," IEEE J. Selec. Areas in Communications 20, 997-1015 (2002).
  22. X. Zhou, J. Yu, P. D. Magill, "Cascaded two-modulus algorithm for blind polarization de-multiplexing of 114-Gb/s PDM-8-QAM optical signals," Proc. OFC'09 (2009).
  23. W. A. Sethares, G. A. Rey, C. R. Johnson, Jr., "Approaches to blind equalization of signals with multiple modulus," Proc. ICASSP'89 (1989).
  24. M. J. Ready, R. P. Gooch, "Blind equalization on radius directed adaptation," Proc. ICASSP'90 (1990).
  25. H. Louchet, K. Kuzmin, A. Richter, "Improved DSP algorithms for coherent 16-QAM transmission," Proc. ECOC'08 (2008).
  26. M. Seimetz, "Performance of coherent optical square-16-QAM-systems based on IQ-transmitters and homodyne receivers with digital phase estimation," Proc. OFC'06 (2006).
  27. R. A. Axford, L. B. Milstein, J. R. Zeidler, "A dual-mode algorithm for blind equalization of QAM signals: CADAMA," Proc. Conf. Rec. 29th Asilomar Conf. Signals, Syst. Comput. (1995) pp. 172.
  28. A. Spalvieri, R. Valtolina, Data-Aided and Phase-Independent Adaptive Equalization for Data Transmission Systems European Patent Application EP 1 089 457 A2 (2000).
  29. T. Pfau, S. Hoffmann, R. Noe, "Hardware efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellation," J. Lightw. Technol. 27, 989-999 (2009).
  30. E. Ip, J. M. Kahn, "Feedforward carrier recovery for coherent optical communication systems," J. Lightw. Technol. 25, 2675-2692 (2007).
  31. J. G. Proakis, Digital Communications (McGraw Hill, 2001).
  32. M. Seimetz, "Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation," Proc. OFC'08 (2008).
  33. Y. Mori, "Phase-noise tolerance of optical 16-QAM signals demodulated with decision-directed carrier-phase estimation," Proc. OFC'09 (2009).
  34. C. R. Doerr, R. Pafchek, L. W. Stulz, "Integrated band demultiplexer using waveguide grating routers," IEEE Photon. Technol. Lett. 15, 1088-1090 (2003).
  35. C. R. Doerr, L. L. Buhl, M. A. Cappuzzo, E. Y. Chen, L. T. Gomez, F. P. Klemens, R. C. Keller, "Interleaver Using an Arrayed-Waveguide Grating-Lens-Grating Configuration for Spectrally Efficient Systems," IEEE Photon. Technol. Lett. 22, 6-8 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited