OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 4 — Feb. 15, 2010
  • pp: 587–595

A Theoretical and Experimental Study on Modulation-Format-Independent Wavelength Conversion

Xingwen Yi, Runxiang Yu, Junya Kurumida, and S. J. B. Yoo

Journal of Lightwave Technology, Vol. 28, Issue 4, pp. 587-595 (2010)

View Full Text Article

Acrobat PDF (1044 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


Modern optical networks are adopting advanced modulation formats. Future dynamic optical networks will benefit from all-optical wavelength conversion and signal regeneration techniques in support of multiple modulation formats. This paper presents a concept for a modulation-format-independent wavelength conversion technique based on an optical hybrid and an in-phase/quadrature (IQ) wavelength converter. This technique has the potential for wavelength conversion and signal regeneration of multiple modulation formats. This paper also discusses the signal distortions and noises in the semiconductor optical amplifier based IQ wavelength converter. A proof-of-principle experiment shows the wavelength conversion results of multiple modulation formats. Further, this paper presents the signal regeneration of a return-to-zero quadrature-phase-shifted-keying signal through simulation.

© 2010 IEEE

Xingwen Yi, Runxiang Yu, Junya Kurumida, and S. J. B. Yoo, "A Theoretical and Experimental Study on Modulation-Format-Independent Wavelength Conversion," J. Lightwave Technol. 28, 587-595 (2010)

Sort:  Year  |  Journal  |  Reset


  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightw. Technol. 14, 955-966 (1996).
  2. A. H. Gnauck, P. J. Winzer, "Optical phase-shift-keyed transmission," J. Lightw. Technol. 23, 115-130 (2005).
  3. J. Yu, M. F. Huang, G. K. Chang, "Polarization insensitive wavelength conversion for 4$\,\times\,$112 Gbit/s polarization multiplexing RZ-QPSK signals," Opt. Exp. 16, 21161-21169 (2008).
  4. M. Galili, B. Huettl, C. Schmidt-Langhorst, A. Gual i Coca, R. Ludwig, C. Schubert, "320 Gbit/s DQPSK all-optical wavelength conversion using four wave mixing," Proc. OFC (2007) pp. 1-3.
  5. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, S. B. Christman, "1.5-m-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO waveguides," IEEE Photon. Technol. Lett. 11, 653-655 (1999).
  6. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, N. Antoniades, "Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding," Appl. Phys. Lett. 68, 2609-2611 (1996).
  7. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta, "Signal regeneration using low-power four-wave mixing on silicon chip," Nature Photon. 2, 35-38 (2008).
  8. X. Yi, R. Yu, J. Kurumida, S. J. B. Yoo, "Modulation-format-independent wavelength conversion," Proc. OFC (2009) pp. 1-3.
  9. T. Durhuus, C. Joergensen, B. Mikkelsen, R. J. S. Pedersen, K. E. Stubkjaer, "All optical wavelength conversion by SOA's in a Mach–Zehnder configuration," IEEE Photon. Technol. Lett. 6, 53-55 (1994).
  10. M. Izutsu, S. Shikama, T. Sueta, "Integrated optical SSB modulator/frequency shifter," IEEE J. Quantum Electron. 17, 2225-2227 (1981).
  11. T. Okoshi, K. Kikuchi, Coherent Optical Fiber Communications (Springer-Verlag, 1988).
  12. E. Ciaramella, A. D'Errico, R. Proietti, G. Contestabile, "WDM-POLSK transmission systems by using semiconductor optical amplifiers," J. Lightw. Technol. 24, 4039-4046 (2006).
  13. R. C. Jones, "A new calculus for the treatment of optical systems," J. Opt. Soc. Amer. 31, 488-493 (1941).
  14. Z. Zhu, M. Funabashi, Z. Pan, L. Paraschis, D. L. Harris, S. J. B. Yoo, "High-performance optical 3R regeneration for scalable fiber transmission system applications," J. Lightw. Technol. 25, 504-511 (2007).
  15. P. Vorreau, A. Marculescu, J. Wang, G. Bottger, B. Sartorius, C. Bornholdt, J. Slovak, M. Schlak, C. Schmidt, S. Tsadka, "Cascadability and regenerative properties of SOA all-optical DPSK wavelength converters," IEEE Photon. Technol. Lett. 18, 1970-1972 (2006).
  16. K. Mishina, S. M. Nissanka, A. Maruta, S. Mitani, K. Ishida, K. Shimizu, T. Hatta, K. Kitayama, "All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters," Opt. Exp. 15, 7774-7785 (2007).
  17. M. L. Masanovic, V. Lal, J. A. Summers, J. S. Barton, E. J. Skogen, L. G. Rau, L. A. Coldren, D. J. Blumenthal, "Widely tunable monolithically integrated all-optical wavelength converters in InP," J. Lightw. Technol. 23, 1350-1362 (2005).
  18. M. J. Connelly, "Wideband semiconductor optical amplifier steady-state numerical model," IEEE J. Quantum Electron. 37, 439-447 (2001).
  19. N. Storkfelt, B. Mikkelsen, D. S. Olesen, M. Yamaguchi, K. E. Stubkjaer, "Measurement of carrier lifetime and linewidth enhancement factor for 1.5-mu m ridge-waveguide laser amplifier," IEEE Photon. Technol. Lett. 3, 632-634 (1991).
  20. T. Akiyama, M. Sugawara, Y. Arakawa, "Quantum-dot semiconductor optical amplifiers," Proc. IEEE 95, 1757-1766 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited