OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 4 — Feb. 15, 2010
  • pp: 624–640

Fiber Optics, From Sensing to Non Invasive High Resolution Medical Imaging

Adrian Gh. Podoleanu

Journal of Lightwave Technology, Vol. 28, Issue 4, pp. 624-640 (2010)

View Full Text Article

Acrobat PDF (2925 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A review is presented on a selection of methods and devices initially developed by the fiber optic, sensing and fiber laser communities which have later found applications in high resolution non-invasive optical imaging. Three avenues have been identified in the modern low coherence interferometry and in the optical coherence tomography technologies which have taken inspiration from fiber optic sensing, fiber optic devices, fiber lasers and fiber optic communications: 1) optical sources; 2) optical configurations; and 3) signal processing. The review will illustrate state of the art examples of concept evolution along these three avenues.

© 2010 IEEE

Adrian Gh. Podoleanu, "Fiber Optics, From Sensing to Non Invasive High Resolution Medical Imaging," J. Lightwave Technol. 28, 624-640 (2010)

Sort:  Year  |  Journal  |  Reset


  1. C. L. Schepens, "The development of ophthalmoscopy," Bull. Soc. Belge Ophthalmol. 2006/4, 16-19 (2006).
  2. R. H. Webb, Noninvasive Diagnostic Techniques in Ophthalmology (Springer-Verlag, 1990) pp. 438-450.
  3. K. Venkateswaran, A. M. Roorda, F. Romero-Borja, "Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope," J. Biomed. Opt. 9, 132-138 (2004).
  4. S. A. Al-Chalabi, B. Culshaw, D. E. N. Davies, "Partially coherent sources in interferometric sensors," Proc. 1st Int. Conf. Opt. Fibre Sensors (1983) pp. 132-135.
  5. R. C. Youngquist, S. Carr, D. E. N. Davies, "Optical coherence-domain reflectometry: A new optical evaluation technique," Opt. Lett. 12, 158-160 (1987).
  6. A. F. Fercher, K. Mengedoht, W. Werner, "Eye length measurement by interferometry with partially coherent light," Opt. Lett. 13, 186-189 (1988).
  7. T. Sawatari, "Optical heterodyne scanning microscope," Appl. Opt. 12, 2768-2772 (1973).
  8. D. Huang, E. A. Swanson, C. P. Lin, J. P. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, "Optical coherence tomography," Science 254, 1178-1181 (1991).
  9. W. Drexler, "Ultrahigh-resolution optical coherence tomography," J. Biomed. Opt. 9, 47-74 (2004).
  10. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. St. J. Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, D. Stifter, "Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre," Opt. Exp. 14, 1596-1603 (2006).
  11. T. Mitsui, "Dynamic range of optical reflectometry with spectral interferometer," Jpn. J. Appl. Phys. 38, 6133-6137 (1999).
  12. M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Exp. 11, 2183-2189 (2003).
  13. Y. Mazurenko, "Optical coherence tomography from viewpoint of information efficiency," Imag. Sci. J. 54, 92-102 (2006).
  14. L. M. Smith, C. C. Dobson, "Absolute displacement measurements using modulation of the spectrum of white light in a michelson interferometer," Appl. Opt. 28, 3339-3342 (1981).
  15. S. Taplin, A. Gh. Podoleanu, D. J. Webb, D. A. Jackson, "Displacement sensor using channeled spectrum dispersed on a linear CCD array," Electron. Lett. 29, 896-897 (1993).
  16. A. Gh. Podoleanu, S. Taplin, D. J. Webb, D. A. Jackson, "Channeled spectrum display using a CCD array for student laboratory demonstrations," Eur. J. Phys. 15, 266-271 (1994).
  17. Y. Chen, L. N. Vuong, J. Liu, J. Ho, V. J. Srinivasan, I. Gorczynska, A. J. Witkin, J. S. Duker, J. Schuman, J. G. Fujimoto, "Three-dimensional ultrahigh resolution optical coherence tomography imaging of age-related macular degeneration," Opt. Exp. 17, 4046-4060 (2009).
  18. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Exp. 12, 2404-2422 (2004).
  19. C. K. Hitzenberger, P. Trost, P. Lo, Q. Zhou, "Three-dimensional imaging of the human retina by high-speed optical coherence tomography," Opt. Exp. 11, 2753-2761 (2003).
  20. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, J. G. Fujimoto, "Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70 000 to 312 500 axial scans per second," Opt. Exp. 16, 15149-15169 (2008).
  21. S. Moon, D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Exp. 14, 11575-11584 (2006).
  22. R. Huber, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, "Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236, 000 axial scans per second," Opt. Lett. 32, 2049-2051 (2007).
  23. A. Gh. Podoleanu, "Unique interpretation of talbot bands and Fourier domain white light interferometry," Opt. Exp. 15, 9867-9876 (2007).
  24. A. Gh. Podoleanu, R. B. Rosen, "Combinations of techniques in imaging the retina with high resolution,," Progr. Retinal Eye Res. 27, 464-499 (2008).
  25. J. K. Barton, S. Tang, R. Lim, B. J. Tromberg, "Simultaneous optical coherence and multiphoton microscopy of skin-equivalent tissue models," Proc. SPIE (2007) pp. X6270-X6270.
  26. G. Genty, S. Coen, J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Amer. B 24, 1771-1785 (2007).
  27. A. B. Lobo Ribeiro, M. Melo, J. R. Salcedo, "Optical fiber sources for measurement and imaging," Proc. SPIE 7139 (2008).
  28. J. Price, W. Belardi, T. Monro, A. Malinowski, A. Piper, D. Richardson, "Soliton transmission and supercontinuum generation in holey fiber, using a diode pumped Ytterbium fiber source," Opt. Exp. 10, 382-387 (2002).
  29. M. A. Choma, K. Hsu, J. A. Izatt, "Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source," J Biomed. Opt. (2005) 10$\_$4, 044009$\_$pp. 044009-1 to 044009-6.
  30. R. Huber, M. Wojtkowski, J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography," Opt. Exp. 14, 3225-3237 (2006).
  31. R. Huber, D. C. Adler, J. G. Fujimoto, "Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370, 000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
  32. C. M. Eigenwillig, W. Wieser, B. R. Biedermann, R. Huber, "Subharmonic Fourier domain mode locking," Opt. Lett. 34, 725-727 (2009).
  33. W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma, "115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser," Opt. Lett. 30, 3159-3161 (2005).
  34. Y. Mao, C. Flueraru, S. Sherif, S. Chang, "High performance wavelength-swept laser with mode-locking technique for optical coherence tomography," Opt. Commun. 282, 88-92 (2009).
  35. K. Shimizu, T. Horiguchi, Y. Koyamada, "Frequency translation of light waves by propagation around an optical ring circuit containing a frequency shifter: 1. Experiment," Appl. Opt. 32, 6718-6726 (1993).
  36. F. D. Nielsen, L. Thrane, J. F. Black, A. Bjarklev, P. E. Andersen, "Swept wavelength source in the 1 $\mu$m range," Opt. Exp. 13, 4096-4106 (2005).
  37. K. Goda, D. R. Solli, B. Jalali, "Real-time optical reflectometry enabled by amplified dispersive Fourier transformation," Appl. Phys Lett. 93, (2008) pp. 031106-1 to 031106-3.
  38. H. Kakuma, K. Ohbayashi, Y. Arakawa, "Optical imaging of hard and soft dental tissue using discretely swept optical frequency domain reflectometry optical coherence tomography at wavelengths from 1560 to 1600 nm," J. Biomed. Opt. 13, 14012- (2008).
  39. B. Považay, B. Hofer, B. Hermann, C. Torti, V. Kajić, A. Unterhuber, W. Drexler, "High-speed high-resolution optical coherence tomography at 800 and 1060 nm," Proc. SPIE .
  40. K. Takada, A. Himeno, K. Yukimatsu, "Phase-noise and shot-noise operations of low coherence optical time domain reflectometry," Appl. Phys. Lett 59, 2483-2485 (1991).
  41. A. Gh. Podoleanu, "Unbalanced versus balanced operation in an OCT system," Appl. Opt. 39, 173-182 (2000).
  42. A. Gh. Podoleanu, G. M. Dobre, D. J. Webb, D. A. Jackson, "Coherence imaging by use of a newton rings sampling function," Opt. Lett. 21, 1789-1791 (1996).
  43. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, "Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry," J. Biomed. Opt. 3, 12-20 (1998).
  44. A. Gh. Podoleanu, D. A. Jackson, "Combined optical coherence tomograph and scanning laser ophthalmoscope," Electron. Lett. 34, 1088-1090 (1998).
  45. A. Gh. Podoleanu, G. M. Dobre, R. Cernat, J. A. Rogers, J. Pedro, R. B. Rosen, P. Garcia, "Investigations of the eye fundus using a simultaneous optical coherence tomography/indocyanine green fluorescence imaging system," J. Biomed. Opt. 12, 014019- (2007).
  46. R. B. Rosen, P. Garcia, A. Gh. Podoleanu, R. G. Cucu, G. Dobre, M. E. J. Van Velthoven, M. D. de Smet, J. A. Rogers, M. Hathaway, J. Pedro, R. Weitz, Optical Coherence Tomography Technology and Applications, Series: Biological and Medical Physics, Biomedical Engineering (Springer, 2008) pp. 448-474.
  47. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
  48. D. C. Adler, C. Zhou, T.-H. Tsai, J. Schmitt, Q. Huang, H. Mashimo, J. G. Fujimoto, "Three-dimensional endomicroscopy of the human colon using optical coherence tomography," Opt. Exp. 17, 784-796 (2009).
  49. J. Su, J. Zhang, L. Yu, Z. Chen, "In vivo three -dimensional microelectromechanical endoscopic swept source optical coherence tomography," Opt. Exp. 15, 10390-10396 (2007).
  50. T. Wu, Z. Ding, K. Wang, M. Chen, C. Wang, "Two-dimensional scanning realized by an asymmetry fiber cantilever driven by single piezo bender actuator for optical coherence tomography," Opt. Exp. 17, 13819-13829 (2009).
  51. J. M. Tam, L. Song, D. R. Walt, "Fabrication and optical characterization of imaging fiber-based nanoarrays," J. Nanosci. Nanotechnol. 67, 498-502 (2005).
  52. J. Calatroni, C. Froehly, H. Al Mawie, "Transmission d'image en couleurs dans une seule fibre optique," Appl. Opt. 26, 2206-2212 (1987).
  53. J. E. Calatroni, P. Sandoz, G. Tribillon, "Surface profiling by means of double spectral modulation," Appl. Opt. 32, 30-37 (1993).
  54. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, G. J. Tearney, "Spectral-domain spectrally-encoded endoscopy," Opt. Exp. 15, 2432-2444 (2007).
  55. L. Fu, X. Gan, M. Gu, "Nonlinear optical microscopy based on double-clad photonic crystal fibers," Opt. Exp. 13, 5528-5534 (2005).
  56. J. Gamelin, Y. Yang, N. Biswal, Y. Chen, S. Yan, X. Zhang, M. Karemeddini, Q. Zhu, "A prototype hybrid intraoperative probe for ovarian cancer detection," Opt. Exp. 17, 7245-7258 (2009).
  57. M. R. Hee, D. Huang, E. A. Swanson, J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Amer. B 9, 903-908 (1992).
  58. G. Yao, L. V. Wang, "Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography," Opt. Lett. 24, 537-539 (1999).
  59. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, J. S. Nelson, "Two dimensional birefringence imaging in biological tissue by polarization -sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997).
  60. M. G. Ducros, J. D. Marsack, H. G. Grady Rylander III, S. L. Thomsen, T. E. Milner, "Primate retina imaging with polarization-sensitive optical coherence tomography," J. Opt. Soc Am. A 18, 2945-2956 (2001).
  61. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, J. S. Nelson, "High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin," Opt. Lett. 25, 1355-1358 (2000).
  62. S. Jiao, W. Yu, G. Stoica, L. Wang, "Optical-fiber based Mueller optical coherence tomography," Opt. Lett. 28, 1206-1208 (2003).
  63. J. E. Roth, J. A. Kozak, S. Yazdanfar, A. M. Rollins, J. A. Izatt, "Simplified method for polarization—sensitive optical coherence tomography," Opt. Lett. 26, 1069-1071 (2001).
  64. J. Zhang, S. Guo, W. Jung, J. Stuart Nelson, Z. Chen, "Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibres," Opt. Exp. 11, 3262-3270 (2003).
  65. J. F. de Boer, S. M. Srinivas, B. Hyle Park, T. H. Pham, Z. Chen, T. E. Milner, J. Stuart Nelson, "Polarization effects in optical coherence tomography of various biological tissues," IEEE J. Sel. Top. In Quatum Electron. 5, 1200-1204 (1999).
  66. H. F. Hazebroek, A. A. Holscher, "Interferometric ellipsometry," J. Phys. E: Sci. Instrum. 6, 822-826 (1973).
  67. K. Schoenenberger, B. W. Colston Jr., D. J. Maitland, L. B. da Silva, M. J. Everett, "Mapping of birefringence and thermal damage in tissue by use of polarization sensitive optical coherence tomography," Appl. Opt. 37, 6026-6036 (1998).
  68. R. G. Cucu, J. Pedro, R. B. Rosen, A. Gh. Podoleanu, "Polarization-sensitive OCT system using single-mode fiber," Proc. SPIE (2004) pp. 170-177.
  69. Z. A. Yasa, N. M. Amer, "A rapid-scanning autocorrelation scheme for continuous monitoring of picosecond laser pulses," Opt. Comm. 36, 406-408 (1981).
  70. K. F. Kwong, D. Yankelevich, K. C. Chu, J. P. Heritage, A. Dienes, "400 Hz mechanical scanning optical delay line," Opt. Lett. 18, 558-560 (1993).
  71. G. Tearney, B. Bouma, J. Fujimoto, "High-speed phase- and group-delay scanning with a grating based phase control delay line," Opt. Lett. 22, 1811-1813 (1997).
  72. C. C. Rosa, J. Rogers, A. G. Podoleanu, "Fast scanning transmissive delay line for optical coherence tomography," Opt. Lett. 30, 3263-3265 (2005).
  73. A. Bradu, L. Ma, J. Bloor, A. Podoleanu, "Using en-face optical coherence tomography to analyse gene function in Drosophila Melanogaster larval heart," Proc. SPIE 7139 (2008).
  74. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
  75. R. J. Zawadzki, S. S. Choi, S. M. Jones, S. S. Oliver, J. S. Werner, "Adaptive optics-optical coherence tomography: Optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Amer. A 24, 1373-1383 (2007).
  76. D. Hammer, D. Ferguson, N. Iftimia, T. E. Ustun, V. Wollstein, H. Ishikawa, M. Gabriele, W. Dilworth, L. Kagemann, J. Schuman, "Advanced scanning methods with tracking optical coherence tomography," Opt. Exp. 13, 7937-7947 (2005).
  77. M. Pircher, B. Baumann, E. Goetzinger, H. Sattmann, C. K. Hitzenberger, "Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction," Opt. Exp. 15, 16922-16932 (2007).
  78. D. Pan, G. M. Lanza, S. A. Wickline, S. D. Caruthers, "Nanomedicine: Perspective and promises with ligand-directed molecular imaging," Eur. J. Radiology 70, 274-285 (2009).
  79. M. C. Pierce, D. J. Javier, R. Richards-Kortum, "Optical contrast agents and imaging systems for detection and diagnosis of cancer," Int. J. Cancer 123, 1979-1990 (2008).
  80. T. S. Troutman, J. K. Barton, M. Romanowski, "Optical coherence tomography with plasmon resonant nanorods of gold," Opt. Lett. 32, 1438-1440 (2007).
  81. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K.-P. Chan, M. Itoh, T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Exp. 13, 10652-10664 (2005).
  82. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, Y. Yasuno, "Optical coherence angiography," Opt. Exp. 14, 7821-7840 (2006).
  83. D. L. Marks, T. S. Ralston, S. A. Boppart, Optical Coherence Tomography Technology and Applications, Series: Biological and Medical Physics, Biomedical Engineering (Springer, 2008) pp. 405-428.
  84. M. Wojtkowski, A. Kowalczyk, P. Targowski, I. Gorczynska, "Fourier-domain optical coherence tomography: Next step in optical imaging," Opt. Appl. XXXII, 569-580 (2002).
  85. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, R. Noé, "Coherent optical communication: Towards realtime systems at 40 Gbit/s and beyond," Opt. Exp. 16, 866-872 (2008).
  86. M. C. Tomic, J. M. Elazar, Z. V. Djinovic, "Low-coherence interferometric method for measurement of displacement based on a 3$\,\times\,$3 fibre-optic directional coupler," Opt. A: Pure Appl. Opt. 4, S381-S386 (2002).
  87. M. V. Sarunic, M. A. Choma, C. H. Yang, J. A. Izatt, "Instantaneous complex conjugate resolved spectral domain and swept-source OCT using 3$\, \times \,$3 fiber couplers," Opt. Exp. 13, 957-967 (2005).
  88. J. Zhang, J. S. Nelson, Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
  89. A. B. Vakhtin, K. A. Peterson, D. J. Kane, "Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31, 1271-1273 (2006).
  90. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103- (2007).
  91. L. An, R. K. Wang, "Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography," Opt. Lett. 32, 3423-3425 (2007).
  92. A. H. Bachmann, R. A. Leitgeb, T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Exp. 14, 1487-1496 (2006).
  93. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Exp. 17, 7-24 (2009).
  94. F. Talbot, "An experiment on the interference of light," Philos. Mag. 10, 364- (1837).
  95. G. B. Airy, "The bakerian lecture—on the theoretical explanation of an apparent new polarity of light," Phil. Trans. R. Soc. London 130, 225-244 (1840).
  96. M. P. Givens, "Talbot's bands," Am. J. Phys. 61, 601-605 (1993).
  97. D. Woods, A. Gh. Podoleanu, "Controlling the shape of Talbot bands' visibility," Opt. Exp. 16, 9654-9670 (2008).
  98. A. Gh. Podoleanu, S. Taplin, D. J. Webb, D. A. , Jackson, "Theoretical study of talbot-like bands observed using a laser diode below threshold," J. Pure Appl. Opt. 7, 517-536 (1998).
  99. A. Gh. Podoleanu, D. J. Woods, "Power efficient FDOCT setup for selection in the optical path difference sign using Talbot bands," Opt. Lett. 32, 2300-2302 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited