OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 4 — Feb. 15, 2010
  • pp: 641–650

An 8$\,\times\,$8 InP Monolithic Tunable Optical Router (MOTOR) Packet Forwarding Chip

Steven C. Nicholes, Milan L. Mašanović, Biljana Jevremović, Erica Lively, Larry A. Coldren, and Daniel J. Blumenthal

Journal of Lightwave Technology, Vol. 28, Issue 4, pp. 641-650 (2010)


View Full Text Article

Acrobat PDF (1734 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, we demonstrate single-channel operation of the first InP monolithic tunable optical router (MOTOR) chip designed to function as the packet forwarding engine of an all-optical router. The device has eight-input and eight-output ports and is capable of 40-Gb/s operation per port with bit-error rates below 1E-9. MOTOR integrates eight wavelength-tunable differential Mach–Zehnder semiconductor optical amplifier (SOA) wavelength converters with preamplifiers and a passive 8$\,\times\,$8 arrayed-waveguide grating router. Each wavelength converter employs a widely tunable sampled-grating distributed Bragg reflector (DBR) laser for efficient wavelength switching across the C band and other functions required for 40-Gb/s wavelength conversion. Active and passive regions of the chip are defined through a robust quantum well intermixing process to optimize the gain in the wavelength converters and minimize the propagation losses in passive sections of the chip. The device is one of the most complex photonic integrated circuits (PICs) reported to date, with dimensions of 4.25 mm$\,\times\,$14.5 mm and more than 200 functional elements integrated on-chip. We demonstrate single-channel wavelength conversion and channel switching with this device using $2^{31}-1$ pseudorandom bit sequence (PRBS) data at 40 Gb/s. A power penalty as low as 4.5 dB was achieved with less than 2-W drive power per channel.

© 2010 IEEE

Citation
Steven C. Nicholes, Milan L. Mašanović, Biljana Jevremović, Erica Lively, Larry A. Coldren, and Daniel J. Blumenthal, "An 8$\,\times\,$8 InP Monolithic Tunable Optical Router (MOTOR) Packet Forwarding Chip," J. Lightwave Technol. 28, 641-650 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-4-641


Sort:  Year  |  Journal  |  Reset

References

  1. D. Wolfson, V. Lal, M. L. Mašanović, H. N. Poulsen, C. Coldren, G. Epps, D. Civello, P. Donner, D. J. Blumenthal, "All-optical asynchronous variable-length optically labelled 40 Gbps packet switch," Eur. Conf. Opt. Commun. GlasgowScotland (2005).
  2. R. Nagarajan, M. Kato, J. Pleumeekers, P. Evans, D. Lambert, A. Chen, V. Dominic, A. Mathur, P. Chavarkar, M. Missey, A. Dentai, S. Hurtt, J. Bäck, R. Muthiah, S. Murthy, R. Salvatore, C. Joyner, J. Rossi, R. Schneider, M. Ziari, H.-S. Tsai, J. Bostak, M. Kauffman, S. Pennypacker, T. Butrie, M. Reffle, D. Mehuys, M. Mitchell, A. Nilsson, S. Grubb, F. Kish, D. Welch, "Large-scale photonic integrated circuits for long-haul transmission and switching," J. Opt. Netw. 6, 102-111 (2007).
  3. M. K. Smit, E. A. J. M. Bente, M. T. Hill, F. Karouta, X. J. M. Leijtens, Y. S. Oei, J. J. G. M. van der Tol, R. Notzel, P. M. Koenraad, H. S. Dorren, H. de Waardt, A. M. J. Koonen, G. D. Khoe, "Current status and prospects of photonic IC technology," Proc. IEEE Conf. Indium Phosphide Related Mater. (2007) pp. 3-6.
  4. R. Kaiser, H. Heidrich, "Optoelectronic/photonic integrated circuits on InP between technological feasibility and commercial success," IEICE Trans. Electron. E85-C, 970-981 (2002).
  5. J. Raring, L. Coldren, "40-Gb/s widely tunable transceivers," IEEE J. Sel. Topics Quantum Electron. 13, 3-14 (2007).
  6. M. L. Mašanović, V. Lal, J. A. Summers, J. S. Barton, E. J. Skogen, L. G. Rau, L. A. Coldren, D. J. Blumenthal, "Widely tunable monolithically integrated all-optical wavelength converters in InP," J. Lightw. Technol. 23, 1350-1362 (2005).
  7. V. Lal, M. L. Mašanović, J. A. Summers, G. Fish, D. J. Blumenthal, "Monolithic wavelength converters for high-speed packet-switched optical networks," IEEE J. Sel. Topics Quantum Electron. 13, 47-57 (2007).
  8. P. Bernasconi, L. Zhang, W. Yang, N. Sauer, L. L. Buhl, J. H. Sinsky, I. Kang, S. Chandrasekhar, D. T. Neilson, "Monolithically integrated 40-Gb/s switchable wavelength converter," J. Lightw. Technol. 24, 71-76 (2006).
  9. M. Dummer, J. Klamkin, A. Tauke-Pedretti, L. Coldren, "40 Gb/s widely tunable wavelength converter with a photocurrent-driven high-impedance TW-EAM and SGDBR laser," Proc. IEEE Int. Semicond. Laser Conf. (2008) pp. 145-146.
  10. C. G. P. Herben, C. G. M. Vreeburg, D. H. P. Maat, X. J. M. Leijtens, Y. S. Oei, F. H. Groen, J. W. Pedersen, P. Demeester, M. K. Smit, "A compact integrated InP-based single-phasar optical crossconnect," IEEE Photon. Technol. Lett. 10, 678-680 (1998).
  11. C. Vreeburg, T. Uitterdijk, Y. Oei, M. Smit, F. Groen, E. Metaal, P. Demeester, H. Frankena, "First InP-based reconfigurable integrated add-drop multiplexer," IEEE Photon. Technol. Lett. 9, 188-190 (1997).
  12. N. Kikuchi, Y. Shibata, H. Okamoto, Y. Kawaguchi, S. Oku, H. Ishii, Y. Yoshikuni, Y. Tohmori, "Monolithically integrated 64-channel WDM channel selector with novel configuration," Electron. Lett. 38, 331-332 (2002).
  13. R. Nagarajan, C. H. Joyner, R. P. Schneider, Jr., J. S. Bostak, T. Butrie, A. G. Dentai, V. G. Dominic, P. W. Evans, M. Kato, M. Kauffman, D. J. H. Lambert, S. K. Mathis, A. Mathur, R. H. Miles, M. L. Mitchell, M. J. Missey, S. Murthy, A. C. Nilsson, F. H. Peters, S. C. Pennypacker, J. L. Pleumeekers, R. A. Salvatore, R. K. Schlenker, R. B. Taylor, H.-S. Tsai, M. F. Van Leeuwen, J. Webjorn, M. Ziari, D. Perkins, J. Singh, S. G. Grubb, M. S. Reffle, D. G. Mehuys, F. A. Kish, D. F. Welch, "Large scale photonic integrated circuits," IEEE J. Sel. Topics Quantum Electron. 11, 50-65 (2005).
  14. “Infinera's 400 Gb/s PIC Sets New Record for Integration,” (2009) http://www.infinera.com/j7/servlet/NewsItem?newsItemID=150 [Accessed: July 15, 2009].
  15. D. F. Welch, F. A. Kish, R. Nagarajan, C. H. Joyner, R. P. Schneider, V. G. Dominic, M. L. Mitchell, S. G. Grubb, T.-K. Chiang, D. Perkins, A. C. Nilsson, "The realization of large-scale photonic integrated circuits and the associated impact on fiber-optic communication systems," J. Lightw. Technol. 24, 4674-4683 (2006).
  16. J. Mack, H. Poulsen, E. Burmeister, B. Stamenic, G. Kurczveil, J. Bowers, D. Blumenthal, "Demonstration of contention resolution for labeled packets at 40 Gb/s using autonomous optical buffers," Proc. Opt. Fiber Commun. Conf. (2009).
  17. E. Burmeister, J. Mack, H. Poulsen, M. L. Mašanović, B. Stamenic, D. Blumenthal, J. Bowers, "Photonic integrated circuit optical buffer for packet-switched networks," Opt. Exp. 17, 6629-6635 (2009).
  18. D. J. Blumenthal, B.-E. Olsson, G. Rossi, T. E. Dimmick, L. Rau, M. L. Mašanović, O. Lavrova, R. Doshi, O. Jerphagnon, J. E. Bowers, V. Kaman, L. A. Coldren, J. Barton, "All-optical label swapping networks and technologies," J. Lightw. Technol. 18, 2058-2075 (2000).
  19. V. Lal, M. L. Mašanović, J. Summers, L. Coldren, D. Blumenthal, "Performance optimization of an InP-based widely tunable all-optical wavelength converter operating at 40 Gb/s," IEEE Photon. Technol. Lett. 4, 577-579 (2006).
  20. V. Lal, Monolithic wavelength converters for high-speed packet switched optical networks Ph.D. dissertation Dept. Electr. Eng. Univ. CaliforniaSanta BarbaraCA (2006).
  21. V. Jayaraman, Z. Chuang, L. Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron. 29, 1824-1834 (1993).
  22. M. Smit, C. van Dam, "PHASAR-based WDM-devices: Principles, design and applications," IEEE J. Sel. Topics Quantum Electron. 2, 236-250 (1996).
  23. E. Skogen, J. Barton, S. Denbaars, L. Coldren, "A quantum-well-intermixing process for wavelength-agile photonic integrated circuits," IEEE J. Sel. Topics Quantum Electron. 8, 863-869 (2002).
  24. J. Shim, M. Yamaguchi, P. Delansay, M. Kitamura, "Refractive index and loss changes produced by current injection in InGaAs(P)-InGaAsP multiple quantum-well (MQW) waveguides," IEEE J. Sel. Topics Quantum Electron. 1, 408-415 (1995).
  25. S. C. Nicholes, M. L. Mašanović, J. Barton, E. J. Norberg, E. Lively, B. Jevremovic, L. A. Coldren, D. J. Blumenthal, "Novel application of quantum well intermixing implant buffer layer to enable high-density photonic integrated circuits in InP," IEEE Conf. Indium Phosphide Related Mater. Newport BeachCA (2009) paper WB1. 2.
  26. L. Ketelsen, R. Kazarinov, "Carrier loss in InGaAsP-InP lasers grown by hydride CVD," IEEE J. Quantum Electron. 31, 811-813 (1995).
  27. J. Besten, M. Dessens, C. Herben, X. Leijtens, F. Groen, M. Leys, M. Smit, "Low-loss, compact, and polarization independent PHASAR demultiplexer fabricated by using a double-etch process," IEEE Photon. Technol. Lett. 14, 62-64 (2002).
  28. J. Raring, E. Skogen, M. L. Mašanović, S. DenBaars, L. Coldren, "Demonstration of high saturation power/high gain SOAs using quantum well intermixing based integration platform," Electron. Lett. 41, 1345-1346 (2005).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited