OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 28, Iss. 5 — Mar. 1, 2010
  • pp: 806–815

Analysis of Polarization Rotator Based on Nematic Liquid Crystal Photonic Crystal Fiber

Mohamed Farhat O. Hameed and Salah S. A. Obayya

Journal of Lightwave Technology, Vol. 28, Issue 5, pp. 806-815 (2010)

View Full Text Article

Acrobat PDF (492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


In this paper, the performance of high-tunable polarization rotator (PR) based on nematic liquid crystal (NLC) photonic crystal fiber is reported. The tunability of the proposed PR results from the change of the optical properties of the NLC with the temperature and external electric field. The influence of the different structure geometrical parameters, rotation angle of the director of the NLC, temperature and operating wavelength on the PR performance is investigated. The numerical results reveal that the suggested PR can provide a strong polarization conversion ratio of 99.81% with a device length of 1072 $\mu$m. It is expected that over the 1.53–1.6 $\mu$m wavelength range, polarization conversion would be more than 99%. The simulation results are evaluated using the full-vectorial finite-difference method and confirmed by the full-vectorial finite-difference beam-propagation method.

© 2010 IEEE

Mohamed Farhat O. Hameed and Salah S. A. Obayya, "Analysis of Polarization Rotator Based on Nematic Liquid Crystal Photonic Crystal Fiber," J. Lightwave Technol. 28, 806-815 (2010)

Sort:  Year  |  Journal  |  Reset


  1. F. Heismann, R. W. Smith, "High-speed polarization scrambler with adjustable phase chirp," IEEE Select. Topics Quantum Electron. 2, 311-318 (1994).
  2. I. Morita, K. Tanka, N. Edagawa, M. Suzuki, "40 Gb/s single-channel soliton transmission over transoceanic distances by reducing Gordon-Haus timing jitter and soliton-soliton interaction," J. Lightw. Technol. 2, 2506-2511 (1999).
  3. Y. Shani, R. Alferness, T. Koch, U. Koren, M. Oron, B. I. Miller, M. G. Young, "Polarization rotation in asymmetric periodic loaded rib waveguides," Appl. Phys. Lett. 59, 1278-1280 (1991).
  4. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, H. A. El-Mikati, "Beam propagation modelling of polarization rotation in deeply etched semiconductor bent waveguides," IEEE Photon. Technol. Lett. 13, 681-683 (2001).
  5. S. S. A. Obayya, N. Somasiri, B. M. A. Rahman, K. T. V. Grattan, "Full vectorial finite element modeling of novel polarization rotators," Opt. Quantum Electron. 35, 297-312 (2003).
  6. B. M. A. Rahman, S. S. A. Obayya, N. Somasiri, M. Rajarajan, K. T. V. Grattan, H. A. El-Mikati, "Design and characterisation of compact single-section passive polarization rotator," IEEE J Lightw. Technol. 19, 512-519 (2001).
  7. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, H. A. El-Mikati, "Improved design of a polarization converter based on semicondutor optical waveguide bends," Appl. Opt. 40, 5395-5401 (2001).
  8. L. Scolari, T. Alkeskjold, J. Riishede, A. Bjarklev, D. Hermann, A. Anawati, M. Nielsen, P. Bassi, "Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers," Opt. Exp. 13, 7483-7496 (2005).
  9. L. Wei, L. Eskildsen, J. Weirich, L. Scolari, T. Alkeskjold, A. Bjarklev, "Continuously tunable all-in-fiber devices based on thermal and electrical control of negative dielectric anisotropy liquid crystal photonic bandgap fibers," Appl. Opt. 48, 497-503 (2009).
  10. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, H. A. El-Mikati, "Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides," J. Lightw. Technol. 20, 1054-1060 (2001).
  11. A. B. Fallahkhair, K. S. Li, T. E. Murphy, "Vector finite difference modesolver for anisotropic dielectric waveguides," J. Lightw. Technol. 26, 1423-1431 (2008).
  12. S. Campbell, R. C. McPhedran, C. Martijn de Sterke, L. C. Botten, "Differential multipole method for microstructured optical fibers," J. Opt. Soc. Amer. B. 21, 1919-1928 (2004).
  13. S. S. A. Obayya, B. M. A. Rahman, K. T. V. Grattan, H. A. El-Mikati, "Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides," J. Lightw. Technol. 20, 1054-1060 (2002).
  14. S. S. A. Obayya, B. M. A. Rahman, H. A. El-Mikati, "New full vectorial numerically efficient propagation algorithm based on the finite element method," J. Lightw. Technol. 18, 409-415 (2000).
  15. E. Montanari, S. Selleri, L. Vincetti, M. Zoboli, "Finite element full vectorial propagation analysis for three dimensional z-varying optical waveguides," J. Lightw. Technol. 16, 703-714 (1998).
  16. W. P. Huang, C. L. Xu, "Simulation of three-dimensional optical waveguides by a full-vector beam propagation method," IEEE J. Quantum Electron. 29, 2639-2649 (1993).
  17. J. Xiao, X. Sun, "A modified full-vectorial finite-difference beam propagation method based on H-fields for optical waveguides with step-index profiles," Opt. Commun. 266, 505-511 (2006).
  18. G. Ren, P. Shum, X. Yu, J. Hu, G. Wang, Y. Gong, "Polarization dependent guiding in liquid crystal filled photonic crystal fibers," Opt. Commun. 281, 1598-1606 (2008).
  19. W. C. Chew, J. M. Jin, E. Michielssen, "Complex coordinate stretching as a generalized absorbing boundary condition," Microw. Opt. Technol. Lett. 15, 363-369 (1997).
  20. M. W. Haakestad, T. T. Alkeskjold, M. Nielsen, L. Scolari, J. Riishede, H. E. Engan, A. Bjarklev, "Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber," IEEE Photon. Technol. Lett. 17, 819-821 (2005).
  21. B. R. Acharya, K. W. Baldwin, J. A. Rogers, C. C. Huang, R. Pindak, "In-fiber nematic liquid crystal optical modulator based on in-plane switching with microsecond response time," Appl. Phys. Lett. 81, 5243-5245 (2002).
  22. D. Fang, Q. L. Yan, T. W. Shin, "Electrically tunable liquid-crystal photonic crystal fiber," Appl. Phys. Lett. 85, 2181-2183 (2004).
  23. J. C. Knight, T. A. Birks, P. St. J. Russell, D. M. Atkin, "All-silica single-mode fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
  24. A. Mori, K. Shikano, K. Enbutsu, K. Oikawa, K. Naganuma, M. Kato, S. Aozasa, "1.5 $\mu$m band zero-dispersion shifted tellurite photonic crystal fibre with a nonlinear coefficient of 675 W-1km-1," ECOC 2004, 30th Eur. Conf. Optical Communication StockholmSweden Paper Th3.3.6.
  25. X. Feng, A. K. Mairaj, D. W. Hewak, T. M. Monro, "Towards high-indexglass based monomode holey fibre with large-mode-area," Electron. Lett. 40, 167-169 (2004).
  26. J. Y. Y. Leong, Fabrication and applications of lead-silicate glass holey fibre for 1–1.5 microns: Nonlinearity and dispersion trade offs Ph.D. dissertation Faculty of Engineering, Science and Mathematics Optoelectronics Research Centre Univ. SouthamptonSouthamptonU.K. (2007).
  27. P. Petropoulos, T. M. Monro, H. Ebendorff-Heidepriem, K. Frampton, R. C. Moore, D. J. Richardson, "Highly nonlinear and anomalously dispersive lead silicate glass holey fibres," Opt. Exp. 11, 3568-3573 (2003).
  28. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, H. N. Rutt, "Extruded single-mode nonsilica glass holey optical fibres," Electron. Lett. 38, 546-547 (2002).
  29. V. Kumar, A. K. George, J. C. Knight, P. St. J. Russell, "Tellurite photonic crystal fibre," Opt. Exp. 11, 2641-2645 (2003).
  30. S. Fujino, H. Ijiri, F. Shimizu, K. Morinaga, "Measurement of viscosity of multi-component glasses in the wide range for fibre drawing," J. Jpn. Inst. Met. 62, 106-110 (1998).
  31. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, T. P. Hansen, "Selective filling of photonic crystal fibers," J. Opt. A, Pure Appl. Opt. 7, L13-L20 (2005).
  32. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Exp. 13, 9014-9022 (2005).
  33. Y. Huang, Y. Xu, A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
  34. J. Li, ST. Wu, S. Brugioni, R. Meucci, S. Faetti, "Infrared refractive indexes of liquid crystals," J. Appl. Phys. 97, 073501-1-073501-5 (2005).
  35. D. C. Zografopoulos, E. E. Kriezis, T. D. Tsiboukis, "Photonic crystal-liquid crystal fibers for single-polarization or high-birefringence guidance," Opt. Exp. 14, 914-925 (2006).
  36. T. T. Alkeskjold, A. Bjarklev, "Electrically controlled broadband liquid crystal photonic bandgap fiber polarimeter," Opt. Lett. 32, 1707-1709 (2007).
  37. T. R. Wolinski, S. Ertman, A. Czapla, P. Lesiak, K. Nowecka, A. W. Domanski, E. Nowinowski-Kruszelnicki, R. Dabrowski, J. Wojcik, "Polarization effects in photonic liquid crystal fibers," Meas. Sci. Technol. 18, 3061-3069 (2007).
  38. T. R. Wolinski, K. Szaniawska, S. Ertman, P. Lesiak, A. W. Domanski, R. Dabrowski, E. Nowinowski-Kruszelnicki, J. Wojcik, "Influence of temperature and electrical fields on propagation properties of photonic liquid crystal fibers," Meas. Sci. Technol. 17, 985-991 (2006).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited