OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 5 — Mar. 1, 2010
  • pp: 837–846

SOA-Booster Integrated Mach–Zehnder Modulator: Investigation of SOA Position

Mads L. Nielsen, Kiyotaka Tsuruoka, T. Kato, T. Morimoto, Shinya Sudo, Takeshi Okamoto, Kenji Mizutani, H. Sakuma, Kenji Sato, and Koji Kudo

Journal of Lightwave Technology, Vol. 28, Issue 5, pp. 837-846 (2010)


View Full Text Article

Acrobat PDF (1322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Integration of a booster semiconductor optical amplifier (SOA) is an efficient way of overcoming losses in InP based Mach–Zehnder modulators. We analyze the impact of locating the SOA before and after the MZM, respectively, in terms of output power and signal integrity at 10 Gb/s, both experimentally and theoretically. For a device with 10 dB MZM loss it is found that, for a fixed power consumption, locating the SOA after the MZM provides 7–9 dB higher output power. This advantage is reduced for lower MZM losses but remains significant. With the SOA after the MZM, the gain is restricted by dynamic saturation effects (waveform distortion), which is not the case if the SOA is at the input of the MZM. The waveform distortion is accompanied by a spectral red-shift, which degrades the transmission performance. Simulations show that for MZM losses below ${\sim} {\hbox {4}}$ dB, locating the SOA before the MZM can provide a higher power with no waveform distortion and negative chirp, at the cost of a higher SOA gain. For higher MZM losses it is unfeasible to locate the SOA before the MZM, due to a prohibitively large power consumption.

© 2010 IEEE

Citation
Mads L. Nielsen, Kiyotaka Tsuruoka, T. Kato, T. Morimoto, Shinya Sudo, Takeshi Okamoto, Kenji Mizutani, H. Sakuma, Kenji Sato, and Koji Kudo, "SOA-Booster Integrated Mach–Zehnder Modulator: Investigation of SOA Position," J. Lightwave Technol. 28, 837-846 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-5-837


Sort:  Year  |  Journal  |  Reset

References

  1. I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, L. Langley, A. Maestri, A. Pujol, B. Pugh, "Zero chirp 10 Gb/s MQW InP Mach–Zehnder transmitter with fullband tunability," Proc. Technical Digest OFC 2007 (2007).
  2. D. M. Adams, M. Isakson, J. O. Wesstrom, U. Eriksson, S. Hammerfeldt, B. Stoltz, P. Granestrand, E. Goobar, R. Lewen, P. P. Rijole, W. Bardyszewski, "Transmission performance of monolithically integrated Y-brach tunable laser with zero-chirp Mach–Zehnder modulator," IEE Electronics Lett. 43, 522-524 (2007).
  3. K. Tsuzuki, T. Ishibashi, T. Ito, S. Oku, Y. Shibata, T. Ito, R. Iga, Y. Kondo, Y. Tohmori, "A 40 Gb/s InGaAlAs-InAlAs MQW n-i-n Mach–Zehnder modulator with a drive voltage of 2.3 V," IEEE Photon. Technol. Lett. 17, 46-48 (2005).
  4. M. L. Nielsen, K. Tsuruoka, T. Kato, T. Morimoto, S. Sudo, T. Okamoto, K. Mizutani, K. Sato, K. Kudo, "Demonstration of 10 Gb/s ${\rm C}+{\rm L}$ band InP-based Mach–Zehnder modulator," IEEE Photon. Technol. Lett. 20, 1270-1272 (2008).
  5. H. Debregeas-Sillard, C. Fortin, A. Accard, O. Drisse, E. Derouin, F. Pommereau, C. Kazmierski, "Nonlinear effects analysis in DBR lasers: Applications to DBR-SOA and new double Bragg DBR," IEEE J. Sel. Top. Quantum Electron. 13, 1142-1150 (2007).
  6. M. L. Nielsen, S. Sudo, K. Mizutani, T. Okamoto, K. Tsuruoka, K. Sato, K. Kudo, "Integration of functional SOA on the gain chip of an external cavity tunable laser using etched mirror technology," IEEE J. Sel. Top. Quantum Electron. 13, 1104-1111 (2007).
  7. Y. A. Akulova, G. A. Fish, P. Koh, P. Kozodoy, M. Larson, C. Schow, E. Hall, H. Marchand, P. Abraham, L. A. Coldren, "10 Gb/s Mach–Zehnder modulator integrated with widely tunable sampled grating DBR laser," Proc. Technical Digest of OFC'03 (2003).
  8. Optical Transport Network Physical Layer Interfaces ITU-T Rec. G. 959.1, Telecommunication Standardization Sector of ITU (2003).
  9. K. Inoue, "Waveform distortion in a gain-saturated semiconductor optical amplifier for NRZ and Manchester formats," IEE Proc. Optoelectronics 144, 433-437 (1997).
  10. D. Wolfson, "Detailed theoretical investigation and comparison of the cascadability of conventional and gain-clamped SOA gates in multiwavelength optical networks," IEEE Photon. Technol. Lett. 11, 1494-1496 (1999).
  11. E. Tangdiongga, J. J. J. Crijns, L. H. Spiekman, G. N. van den Hoven, H. De Waardt, "Performance analysis of linear optical amplifiers in dynamic WDM systems," IEEE Photon. Technol. Lett. 14, 1196-1198 (2002).
  12. K. Morito, S. Tanaka, "Record high saturation power (${+}22$ dBm) and low noise figure (5.7 dB) polarization-insensitive SOA module," IEEE Photon. Technol. Lett. 17, 1298-1300 (2005).
  13. R. Brenot, F. Pommereau, O. Le Gouezigou, J. Landreau, F. Poingt, L. Le Gouezigou, B. Rousseau, F. Lelarge, F. Martin, G. H. Duan, "Experimental study of the impact of optical confinement on saturation effects in SOA," Proc. Technical Dig. Opt. Fiber Commun. (2005).
  14. E. A. Patent, J. J. G. M. van der Tol, Y. S. Oei, M. K. Smit, M. L. Nielsen, J. Moerk, J. J. M. Binsma, "Integrated SOA-MZI for pattern-effect-free amplification," IEE Electron. Lett. 41, 549-551 (2005).
  15. J. Yu, P. Jeppesen, "Increasing the input power dynamic range of SOA by shifting the transparent wavelength of tunable optical filter," J. Lightw. Technol. 19, 1316-1325 (2001).
  16. A. Mecozzi, "Small-signal theory of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 8, 1471-1473 (1996).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited