OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 7 — Apr. 1, 2010
  • pp: 1121–1134

Optimal Polarization Demultiplexing for Coherent Optical Communications Systems

Ioannis Roudas, Athanasios Vgenis, Constantinos S. Petrou, Dimitris Toumpakaris, Jason Hurley, Michael Sauer, John Downie, Yihong Mauro, and Srikanth Raghavan

Journal of Lightwave Technology, Vol. 28, Issue 7, pp. 1121-1134 (2010)


View Full Text Article

Acrobat PDF (695 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Spectrally-efficient optical communications systems employ polarization division multiplexing (PDM) as a practical solution, in order to double the capacity of a fiber link. Polarization demultiplexing can be performed electronically, using polarization-diversity coherent optical receivers. The primary goal of this paper is the optimal design, using the maximum-likelihood criterion, of polarization-diversity coherent optical receivers for polarization-multiplexed optical signals, in the absence of polarization mode dispersion (PMD). It is shown that simultaneous joint estimation of the symbols, over the two received states of polarization, yields optimal performance, in the absence of phase noise and intermediate frequency offset. In contrast, the commonly used zero-forcing polarization demultiplexer, followed by individual demodulation of the polarization-multiplexed tributaries, exhibits inferior performance, and becomes optimal only if the channel transfer matrix is unitary, e.g., in the absence of polarization dependent loss (PDL), and if the noise components at the polarization diversity branches have equal variances. In this special case, the zero-forcing polarization demultiplexer can be implemented by a 2$\,\times\,$2 lattice adaptive filter, which is controlled by only two independent real parameters. These parameters can be computed recursively using the constant modulus algorithm (CMA). We evaluate, by simulation, the performance of the aforementioned zero-forcing polarization demultiplexer in coherent optical communication systems using PDM quadrature phase shift keying (QPSK) signals. We show that it is, by far, superior, in terms of convergence accuracy and speed, compared to conventional CMA-based polarization demultiplexers. Finally, we experimentally test the robustness of the proposed constrained CMA polarization demultiplexer to realistic imperfections of polarization-diversity coherent optical receivers. The PMD and PDL tolerance of the proposed demultiplexer can be used as a benchmark in order to compare the performance of more sophisticated adaptive electronic PMD/PDL equalizers.

© 2010 IEEE

Citation
Ioannis Roudas, Athanasios Vgenis, Constantinos S. Petrou, Dimitris Toumpakaris, Jason Hurley, Michael Sauer, John Downie, Yihong Mauro, and Srikanth Raghavan, "Optimal Polarization Demultiplexing for Coherent Optical Communications Systems," J. Lightwave Technol. 28, 1121-1134 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-7-1121

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited