OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 8 — Apr. 15, 2010
  • pp: 1176–1183

Efficient Design of Integrated Wideband Polarization Splitter/Combiner

Mohamed A. Swillam, Mohamed H. Bakr, and Xun Li

Journal of Lightwave Technology, Vol. 28, Issue 8, pp. 1176-1183 (2010)


View Full Text Article

Acrobat PDF (900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose a novel design of integrated polarization splitter/combiner with ultra wide bandwidth. The proposed design utilizes the electro-optic (Pockels) effect in GaAs for splitting the polarizations. It also exploits the self imaging phenomenon in MMI couplers with a parabolic index distribution in the vertical direction to significantly increase the bandwidth. We also propose a novel approach for design optimization of the proposed structure. This approach is capable of extracting the propagation constants and their gradient with respect to all the design parameters. This allows for using gradient-based optimization. The computational time of this optimization procedure is only a fraction of that for other recently proposed approaches.

© 2010 IEEE

Citation
Mohamed A. Swillam, Mohamed H. Bakr, and Xun Li, "Efficient Design of Integrated Wideband Polarization Splitter/Combiner," J. Lightwave Technol. 28, 1176-1183 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-8-1176


Sort:  Year  |  Journal  |  Reset

References

  1. B. Glance, "Polarization independent coherent optical receiver," J. Lightw. Technol. 5, 274-276 (1987).
  2. S. Benedetto, R. Gaudino, P. Poggiolini, "Direct detection of optical digital transmission based on polarization shift keying modulation," IEEE J. Sel. Areas Commun. 10, 531-542 (1995).
  3. S. Y. Wang, S. H. Lin, "High speed III-V electrooptic waveguide modulators at $\lambda =1.3\ \mu$m," J. Lightw. Technol. 6, 758-771 (1988).
  4. M. Hu, J. Z. Huang, R. Scarmozzino, M. Levy, R. M. Osgood, Jr."Tunable Mach–Zehnder polarization splitter using height-tapered y-branches," IEEE Photon. Technol. Lett. 9, 773-775 (1997).
  5. P. Albrecht, M. Hamacher, H. Heidrich, D. Hoffmann, H.-P. Nolting, C. M. Weinert, "TE/TM mode splitters on InGaAsP/InP," IEEE Photon. Technol. Lett. 2, 114-115 (1990).
  6. J. J. G. M. van der Tol, J. W. Pedersen, E. G. Metaal, J.-W. van Gaalen, Y. S. Oei, F. H. Groen, "A short polarization splitter without metal overlays on InGaAsP-InP," IEEE Photon. Technol. Lett. 9, 209-211 (1997).
  7. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, M. K. Smit, "A single etch-step fabrication-tolerant polarization splitter," J. Lightw. Technol. 25, 740-746 (2007).
  8. L. B. Soldano, E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: Principles and applications," J. Lightw. Technol. 3, 615-627 (1995).
  9. K. C. Lin, W. Y. Lee, "Guided-wave 1.30/1.55 $\mu$m wavelength division multiplexer based on multimode interference," Electron. Lett. 32, 1259-1261 (1996).
  10. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin, X. Wang, "Low-loss 1$\,\times\,$2 multimode interference wavelength demultiplexer in silicon-germanium alloy," IEEE Photon. Technol. Lett. 11, 575-577 (1999).
  11. S. L. Tsao, H. C. Guo, C. W. Tsai, "A novel 1$\,\times\,$2 single-mode 1300/1550nm wavelength division multiplexer with output facet-tilted MMI waveguide," Opt. Commun. 232, 371-379 (2004).
  12. L. B. Soldano, E. C. M. Pennings, "Optical multimode interference devices based on self-imaging: Principles and applications," J. Lightw. Technol. 3, 615-627 (1995).
  13. J. Xiao, X. Liu, X. Sun, "Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures," Opt. Exp. 15, 8300-8308 (2007).
  14. M. H. Ibrahim, S.-Y. Lee b, M.-K. Chin, N. Mohd Kassim, A. B. Mohammad, "Multimode interference wavelength multi/demultiplexer for 1310 and 1550 nm operation based on BCB 4024-40 photodefinable polymer," Opt. Commun. 273, 383-388 (2007).
  15. A. Ferreras, F. Rodriguez, E. Gomez-Salas, J. L. de Miguel, F. Hernandez-Gil, "Useful formulas for multimode interference power splitter/combiner design," IEEE Photon. Technol. Lett. 5, 1224-1227 (1993).
  16. S. El-Sabban, I. Schanen, D. Khalil, P. Benech, "Fabrication and test of an integrated optical magic T on a glass substrate," IEEE Photon. Technol. Lett. 13, 684-686 (2001).
  17. M. A. Swillam, M. H. Bakr, X. Li, "Design optimization of compact wideband optical switch exploiting stair case index MMI," J. Lightw. Technol. 27, 80-87 (2009).
  18. M. A. Swillam, A. Yehia, A. H. Morshed, D. Khalil, "Self-Imaging in graded index multimode interference devices," Proc. MMS (2003) pp. 61-64.
  19. G. L. Li, P. K. L. Yu, "Optical intensity modulators for digital and analog applications," J. Lightw. Technol. 21, 2010-2030 (2003).
  20. H. El-Refaei, Di. Khalil, "Design of strip loaded weak guiding multimode interference structure for an optical route," IEEEJ. Quantum Electron. 34, 2286-2290 (1998).
  21. S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, "Multimode interference photonic switches (MIPS)," J. Lightw. Technol. 20, 675-680 (2002).
  22. J. S. Rodgers, S. E. Ralph, R. P. Kenan, "Self-guiding multimode interference threshold switch," Opt. Lett. 25, 1717-1719 (2000).
  23. F. Wang, J. Yang, L. Chen, X. Jiang, M. Wang, "Optical switch based on multimode interference coupler," IEEE Photon. Technol. Lett. 18, 421-423 (2006).
  24. S. Namba, "Electro-optical effect of Zincblende," J. Opt. Soc. Amer. 51, 76-79 (1961).
  25. E. P. Chong, S. H. Zak, An Introduction to Optimization (Wiley, 2001).
  26. R. A. Horn, C. Johnson, Matrix Analysis (Cambridge Univ. Press, 1995).
  27. M. A. Swillam, M. H. Bakr, X. Li, "Efficient 3-D sensitivity analysis of surface plasmon waveguide structures," Opt. Exp. 16, 16371-16381 (2008).
  28. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  29. C. L. Xu, W. P. Huang, S. K. Chaudhuri, "Efficient and accurate vector mode calculations by beam propagation method," J. Lightw. Technol. 11, 1209-1215 (1993).
  30. M. A. Swillam, M. H. Bakr, X. Li, "Full vectorial 3-D sensitivity analysis and design optimization using BPM," J. Lightw. Technol. 26, 528-536 (2008).
  31. M. A. Swillam, R. H. Gohary, M. H. Bakr, X. Li, "Efficient approach for sensitivity analysis of lossy and leaky structures using FDTD," J. Progr. Electromagn. Res. (PIER) 94, 197-212 (2009).
  32. M. A. Swillam, M. H. Bakr, X. Li, "Full wave sensitivity analysis of guided wave structures using FDTD," J. Electromagn. Waves Appl. 22, 2135-2145 (2008).
  33. Matlab™ (2005) Version 7.1.
  34. Y. Saad, "Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices," Linear Algebra Appl. 34, 269-295 (1980).
  35. G. R. Hadley, "Wide-angle beam propagation using Pade approximate operators," Opt. Lett. 17, 1743-1775 (1992).
  36. T. Yamazaki, H. Aono, J. Yamauchi, H. Nakano, "Coupled waveguide polarization splitter with slightly different core widths," J. Lightw. Technol. 26, 3528-3533 (2008).
  37. H. Kawanishi, Y. Sugimoto, N. Tanaka, T. Ishikawa, "Sub-100 nm patterning of GaAs using in situe electron beam lithography," Jpn. J. Appl. Phys. 32, 4033-4037 (1993).
  38. D. Lauvernier, S. Garidel, C. Legrand, J. Vilcot, "Realization of sub-micron patterns on GaAs using a HSQ etching mask," Microelectron. Eng. 77, 210-216 (2005).
  39. S. Varoutsis, S. Laurent, I. Sagnes, A. Lemaître, L. Ferlazzo, C. Mériadec, G. Patriarche, I. Robert-Philip, I. Abram, "Reactive-ion etching of high-$Q$ and submicron-diameter GaAs/AlAs micropillar cavities," J. Vac. Sci. Technol. B 23, 2499-2503 (2005).
  40. K. Hennessy, C. Reese, A. Badolato, C. F. Wang, A. Imamoglu, P. M. Petroff, E. Hu, "Fabrication of high Q square-lattice photonic crystal microcavities," J. Vac. Sci. Technol. B: Microelectron. Nanometer Structures 21, 2918-2921 (2003).
  41. K. A. Bertness, A. Roshko, S. E. Asher, C. L. Perkins, "Storage conditions for high-accuracy composition standards of AlGaAs," J. Vac. Sci. Technol. B 23, 1267-1271 (2005).
  42. Z. R. Wasilewski, M. M. Dion, D. J. Lockwood, P. Poole, R. W. Streater, A. J. SpringThorpe, "Composition of AlGaAs," J. Appl. Phys. 81, 1683-1694 (1997).
  43. S. L. Chuang, Physics of Optoelectron. Devices (Wiley, 1995).
  44. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, H. Sigg, "The refractive index of Al$_{\rm x}$Ga$_{1 - {\rm x}}$ As below the band gap: Accurate determination and empirical modeling," J. Appl. Phy. 87, 7825-7837 (2000).
  45. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  46. C. J. Kaalund, Z. Jin, "Novel multimode interference devices for low index contrast materials systems featuring deeply etched air trenches," Opt. Commun. 250, 292-296 (2005).
  47. J. Ito, H. Tsuda, "Novel silica-based waveguide-type polarization beam splitters using trenches filled with low-refractive-index material," J. Lightw. Technol. 27, 5668-5674 (2009).
  48. J. V. Galan, M. Aamer, P. Sanchis, A. Griol, L. Bellieres, J. Ayucar, J. Martî, "A compact and broadband polarization splitter in SOI," Proc. IEEE LEOS Annual Meeting Conf. (2009) pp. 309-310.
  49. W. Ye, D. Xu, S. Janz, P. Waldron, P. Cheben, N. Tarr, "Passive broadband silicon-on-insulator polarization splitter," Opt. Lett. 32, 1492-1494 (2007).
  50. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. Oei, M. K. Smit, "A single etch-step fabrication-tolerant polarization splitter," J. Lightw. Technol. 25, 740-746 (2007).
  51. B. M. A. Rahman, N. Somasiri, C. Themistos, K. T. V. Grattan, "Design of optical polarization splitters in a single-section deeply etched MMI waveguide," Appl. Phys. B 73, 613-618 (2001).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited