OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 28, Iss. 8 — Apr. 15, 2010
  • pp: 1190–1200

Finite-Difference Time-Domain Modeling of Periodic and Disordered Surface Gratings in AlInSb Light Emitting Diodes With Metallic Back-Reflectors

Ian J. Buss, Geoffrey R. Nash, John G. Rarity, and Martin J. Cryan

Journal of Lightwave Technology, Vol. 28, Issue 8, pp. 1190-1200 (2010)


View Full Text Article

Acrobat PDF (1898 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Two-dimensional finite-difference time-domain modeling is undertaken to study the optical behaviour of midinfrared AlInSb light-emitting diode devices with close metallic back reflectors. The location of the source and mirror is investigated in detail and optimised for peak emission at $\lambda_{0}= 4 \ \mu$m. A periodic surface grating is added and it is found that greater than 98% of the light at a specific wavelength may be extracted for specific grating parameters, an enhancement of ${\sim} {\hbox {20}}$-fold. A novel type of grating termed disordered-periodic is then studied and is shown to have a much broader spectral response with more than 50% of the power extracted across a broad wavelength range.

© 2010 IEEE

Citation
Ian J. Buss, Geoffrey R. Nash, John G. Rarity, and Martin J. Cryan, "Finite-Difference Time-Domain Modeling of Periodic and Disordered Surface Gratings in AlInSb Light Emitting Diodes With Metallic Back-Reflectors," J. Lightwave Technol. 28, 1190-1200 (2010)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-28-8-1190


Sort:  Year  |  Journal  |  Reset

References

  1. W. N. Carr, "Photometric figures of merit for semiconductor luminescent sources operating in spontaneous mode," Infrared Phys. 1-19 (1966).
  2. T. S. Moss, G. J. Burrell, B. Ellis, Semiconductor Opto-Electronics (Butterworths, 1973).
  3. D. S. Wuu, S. C. Hsu, S. H. Huang, C. C. Wu, C. E. Lee, R. H. Horng, "GaN/mirror/Si light-emitting diodes for vertical current injection by laser lift-off and wafer bonding techniques," Jpn. J. Appl. Phys. 43, 5239-5242 (2004).
  4. M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Wang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, D. Collins, "High-power truncated-inverted-pyramid (AlxGa1-x)(0.5)In0.5P/GaP light-emitting diodes exhibiting $> 50\hbox{\%}$ external quantum efficiency," Appl. Phys. Lett. 5, 2365-2367 (1999).
  5. W. Schmid, M. Scherer, C. Karnutsch, A. Plossl, W. Wegleiter, S. S. Schad, B. Neubert, K. Streubel, "High-efficiency red and infrared light-emitting diodes using radial outcoupling taper," IEEE J. Sel. Top. Quantum Electron. 8, 256-263 (2002).
  6. D. G. Gevaux, A. Green, C. Palmer, P. Stavrinou, C. Roberts, C. Phillips, "Resonant-cavity light-emitting diodes (RC-LEDs) and detectors for midIR gas-sensing applications," Proc. IEE Optoelectron. 150, 360-364 (2003).
  7. A. M. Green, D. G. Gevaux, C. Roberts, C. C. Phillips, "Resonant-cavity-enhanced photodetectors and LEDs in the midinfrared," Physica E 20, 531-535 (2004).
  8. J. G. Crowder, H. R. Hardaway, C. T. Elliott, "Mid-infrared gas detection using optically immersed, room-temperature, semiconductor devices," Meas. Sci. Technol. 13, 882-884 (2002).
  9. G. R. Nash, T. Ashley, N. T. Gordon, C. Jones, C. Maxey, "Micromachined optical concentrators for IR negative luminescent devices," J. Mod. Opt. 811-820 (2002).
  10. R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G. Dohler, P. Heremans, "40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography," IEEE Trans. Electron. Dev. 47, 1492-1498 (2000).
  11. R. Windisch, P. Heremans, B. Dutta, M. Kuijk, S. Schoberth, P. Kiesel, G. H. Dohler, G. Borghs, "High-efficiency non-resonant cavity light-emitting diodes," Electron. Lett. 34, 1153-1155 (1998).
  12. M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, E. Yablonovitch, "Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals," Appl. Phys. Lett. 75, 1036-1038 (1999).
  13. A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, C. Weisbuch, H. Benisty, "GaN light-emitting diodes with archimedean lattice photonic crystals," Appl. Phys. Lett. 88, 073510- (2006).
  14. D. Delbeke, P. Bienstman, R. Bockstaele, R. Baets, "Rigorous electromagnetic analysis of dipole emission in periodically corrugated layers: The grating-assisted resonant-cavity light-emitting diode," J. Opt. Soc. Am. A 19, 871-880 (2002).
  15. J. Wierer, A. David, M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nat. Photon. 7, (2009).
  16. I. J. Buss, "Three-dimensional numerical modeling of emission from InSb light-emitting diodes with patterned surfaces," J. Opt. Soc. Amer. B 25, 810-817 (2008).
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Comput. Phys. Commun. 181, 687-702 (2010).
  18. M. K. Haigh, G. R. Nash, S. J. Smith, L. Buckle, M. T. Emeny, T. Ashley, "Mid-infrared AlxIn1-xSb light-emitting diodes," Appl. Phys. Lett. 90, 231116- (2007).
  19. K. S. Yee, "Numerical solution of initial boundary value problems involving maxwells equations in isotropic media," IEEE Trans. Ant. Prop. AP-14, 302-307 (1966).
  20. H. Benisty, H. De Neve, C. Weisbuch, "Impact of planar microcavity effects on light extraction-Part I: Basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998).
  21. Y. Yamamoto, T. Kamiya, H. Yanai, "Improved coupled mode analysis of corrugated waveguides and lasers," IEEE J. Quantum Electron. QE-14, 245-258 (1978).
  22. C. A. Flory, "Analysis of directional grating-coupled radiation in waveguide structures," IEEE J. Quantum Electron. 40, 949-957 (2004).
  23. S. Riyopoulos, "Supercritical angle transmission through quasi-random subwavelength-feature interfaces: Integral approach via effective surface currents," J. Opt. Soc. Am. A 22, 2859-2871 (2005).
  24. S. T. Peng, T. Tamir, H. L. Bertoni, "Theory of periodic dielect waveguides," IEEE Trans. Microw. Theory Techniques 23, 123-133 (1975).
  25. A. Yariv, P. Yeh, Photonics .
  26. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, A. Scherer, "30% external quantum efficiency from surface textured, thin-film light-emitting diodes," Appl. Phys. Lett. 63, 2174-2176 (1993).
  27. N. G. Skinner, D. M. Byrne, "Finite-difference time-domain analysis of frequency-selective surfaces in the midinfrared," Appl. Opt. 45, 1943-1950 (2006).
  28. http://ab-initio.mit.edu/wiki/index.php/Meep.
  29. http://www.luxpop.com/.

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited