OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 1 — Jan. 1, 2011
  • pp: 48–52

Conductor Loss of Capacitively Loaded Slow Wave Electrodes for High-Speed Photonic Devices

JaeHyuk Shin , Steven R. Sakamoto, and Nadir Dagli

Journal of Lightwave Technology, Vol. 29, Issue 1, pp. 48-52 (2011)


View Full Text Article

Acrobat PDF (490 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

In this paper, analytical expressions are presented for the microwave attenuation of slow wave electrodes obtained by periodically loading a regular coplanar line with capacitive elements. Such electrodes are commonly used in III-V compound semiconductor electro-optic modulators and other traveling wave devices. These results are obtained by modifying the existing analytical loss expressions for regular coplanar lines based on physical arguments. The predictions of these expressions are compared with experimental results up to 35 GHz and agreement is found to be very good. Validity of this analysis is also discussed. It is found that the approach works very well for lines of practical interest. Hence, the proposed approach enables complete design of capacitively loaded slow wave electrodes by predicting the microwave loss with closed-form equations in addition to velocity and characteristic impedance.

© 2010 IEEE

Citation
JaeHyuk Shin , Steven R. Sakamoto, and Nadir Dagli , "Conductor Loss of Capacitively Loaded Slow Wave Electrodes for High-Speed Photonic Devices," J. Lightwave Technol. 29, 48-52 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-1-48

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited