OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 1 — Jan. 1, 2011
  • pp: 85–90

Reduction of Backscattering Induced Noise by Carrier Suppression in Waveguide-Type Optical Ring Resonator Gyro

Huilian Ma, Zuyuan He, and Kazuo Hotate

Journal of Lightwave Technology, Vol. 29, Issue 1, pp. 85-90 (2011)


View Full Text Article

Acrobat PDF (416 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Resonator micro optic gyro (RMOG) with a waveguide-type ring resonator is a promising candidate for applications requiring small, light and robust gyros. In optical passive ring resonator gyros, clockwise (CW) and counter clockwise (CCW) lightwaves are phase-modulated at different frequencies to reduce the backscattering induced noise. The effectiveness of this technique, however, is determined by the carrier suppression level. In this paper, the influence of the carrier suppression level on the gyro performance is examined experimentally for an RMOG system with a silica waveguide resonator. In our experiment, carrier suppression is applied onto both the CW and the CCW lightwaves at the same time to achieve higher total suppression. We show that carrier suppression as high as 100 dB can be achieved by optimizing the amplitude of the phase modulation. A bias stability of 0.46°/s in 50 seconds is demonstrated in an RMOG with a silica waveguide ring resonator having a ring length of 7.9 cm. This is the best result reported to date, to the best of our knowledge, for waveguide-type ring resonator gyros of this size.

© 2011 IEEE

Citation
Huilian Ma, Zuyuan He, and Kazuo Hotate, "Reduction of Backscattering Induced Noise by Carrier Suppression in Waveguide-Type Optical Ring Resonator Gyro," J. Lightwave Technol. 29, 85-90 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-1-85

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited