OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 10 — May. 15, 2011
  • pp: 1460–1464

Fluorescence-Quenching Free Channel Waveguides in Yb:YAG Ceramics by Carbon Ion Implantation

Ningning Dong, Antonio Benayas, Daniel Jaque, Yang Tan, and Feng Chen

Journal of Lightwave Technology, Vol. 29, Issue 10, pp. 1460-1464 (2011)

View Full Text Article

Acrobat PDF (402 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


We report on the fabrication of channel waveguides in ytterbium-doped yttrium aluminum garnet (Yb:YAG) ceramics by carbon ion implantation. Confocal microfluorescence experiments revealed that the fluorescence efficiency of Yb ions is well preserved in the waveguide area, contrary to the case of helium ion-implanted waveguides characterized by a severe ion implantation-induced fluorescence quenching at waveguide's volume. The fluorescence images of the channel waveguides, and its comparison to those obtained from femtosecond direct laser written Yb:YAG waveguides, have been used to elucidate the waveguide formation mechanisms.

© 2011 IEEE

Ningning Dong, Antonio Benayas, Daniel Jaque, Yang Tan, and Feng Chen, "Fluorescence-Quenching Free Channel Waveguides in Yb:YAG Ceramics by Carbon Ion Implantation," J. Lightwave Technol. 29, 1460-1464 (2011)

Sort:  Year  |  Journal  |  Reset


  1. K. Takaichi, H. Yagi, J. Lu, A. Skirakawa, K. Ueda, T. Yanagitani, "Yb$^{3 +}$ doped Y$_{3}$Al$_{5}$O$_{12}$ ceramics a new solid-state laser material," Phys. Stat. Solidi A 200, R5-R7 (2003).
  2. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, S. Wada, "Efficient tunable Yb:YAG ceramic laser," Opt. Commun. 281, 4411-4414 (2008).
  3. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Ogawa, S. Wada, "Broadly tunable Yb$^{3 +}$-doped Y$_{3}$Al$_{5}$O$_{12}$ ceramic laser at room temperature," Jpn. J. Appl. Phys. 48, 060205 (2009).
  4. A. Pirri, D. Alderighi, G. Toci, M. Vannini, "High-efficiency, high-power and low threshold Yb$^{3 +}$:YAG ceramic laser," Opt. Exp. 17, 23344-23349 (2009).
  5. J. Dong, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, A. A. Kaminskii, "Laser-diode pumped heavy-doped Yb:YAG ceramic lasers," Opt. Lett. 32, 1890-1892 (2007).
  6. A. Pirri, D. Alderighi, G. Toci, M. Vannini, "A ceramic based Yb$^{3 +}$:YAG laser," Laser Phys. 20, 931-935 (2010).
  7. A. A. Kaminskii, Laser Crystals (Springer-Verlag, 1981).
  8. A. Brenier, G. Boulon, "Overview of the best Yb$^{3 +}$-doped laser crystals," J. All. Comp. 323–324, 210-213 (2001).
  9. A. A. Kaminskii, "Laser crystals and ceramics: Recent advances," Laser Photon. Rev. 1, 93-177 (2007).
  10. A. A. Kaminskii, M. Sh. Akchurin, V. I. Alshits, K. Ueda, K. Takaichi, J. Lu, T. Uematsu, M. Musha, A. Shirakawa, V. Gabler, H. J. Eichler, H. Yagi, T. Yanagitani, S. N. Bagayev, J. Fernandez, R. Balda, "New data on investigation of physical properties of nanocrystalline laser ceramic on the base of Y$_{3}$Al$_{5}$O$_{12}$," Crystallogr. Rep. 48, 515-519 (2003).
  11. M. Tsunekane, T. Taira, "High-power operation of diode edge-pumped, composite all-ceramic Yb:Y$_{3}$Al$_{5}$O$_{12}$ microchip laser," Appl. Phys. Lett. 90, 121101-1-121101-3 (2007).
  12. J. Dong, K. Ueda, A. Shirakawa, H. Tagi, T. Yanagitani, A. A. Kaminskii, "Composite Yb:YAG/Cr$^{4 +}$:YAG ceramics picosecond microchip lasers," Opt. Exp. 15, 14516-14523 (2007).
  13. S. Nakamura, H. Yoshioka, Y. Matsubara, T. Okawa, S. Wada, "Broadly tunable Yb$^{3 +}$-Doped Y$_3$Al$_5$O$_{12}$ ceramic laser at room temperature," Jpn. J. Appl. Phys. 48, 075105-1-075105-5 (2010).
  14. J. Aus der Au, G. J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, U. Keller, "16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser," Opt. Lett. 25, 859-861 (2000).
  15. H. Yoshioka, S. Nakamura, T. Ogawa, S. Wada, "Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity," Opt. Exp. 18, 1479-1486 (2010).
  16. J. Siebenmorgen, T. Calmano, K. Petermann, G. Huber, "Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser," Opt. Exp. 18, 16035-10641 (2010).
  17. U. Griebner, H. Schönnagel, "Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide," Opt. Lett. 24, 750-752 (1999).
  18. U. Griebner, R. Grunwald, H. Schönnagel, J. Huschke, G. Erbert, "Laser with guided pump and free-propagating resonator mode using diffusion-bonded rectangular channel waveguides," Appl. Phys. Lett. 77, 3505-3507 (2000).
  19. N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozono, S. Sudo, "A ytterbium- and neodymium-co-doped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 mm," Appl. Phys. Lett. 67, 582-584 (1995).
  20. D. C. Hanna, J. K. Jones, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, M. J. Rodman, P. D. Townsend, L. Zhang, "Quasi-three level 1.03 $\mu$m laser operation of a planar ion-implanted Yb:YAG waveguide," Opt. Commun. 99, 211-215 (1993).
  21. Y. Tan, F. Chen, "Proton-implanted optical channel waveguides in Nd:YAG laser ceramics," J. Phys. D: Appl. Phys. 43, 075105 (2010).
  22. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, R. Guzzi, "Effect of low dose high energy O$^{3 +}$ implantation on refractive index and linear electro-optic properties in X-cut LiNbO$_{3}$: Planar optical waveguide formation and characterization," J. Appl. Phys. 92, 6477-6483 (2002).
  23. A. Rivera, J. Olivares, G. García, J. M. Cabrera, F. Agulló-Rueda, F. Agulló-López, "Giant enhancement of material damage associated to electric excitation during ion irradiation: The case of LiNbO$_{3}$," Phys. Stat. Solidi A 206, 1109-1116 (2009).
  24. P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (Cambridge Univ. Press, 1994).
  25. N. N. Dong, F. Chen, D. Jaque, "Carbon ion implanted Nd:MgO:LiNbO$_{3}$ optical channel waveguides: An intermediate step between light and heavy ion implanted waveguides," Opt. Exp. 18, 5951-5956 (2010).
  26. F. Chen, Y. Tan, D. Jaque, "Ion-implanted optical channel waveguides in neodymium-doped yttrium aluminum garnet transparent ceramics for integrated laser generation," Opt. Lett. 34, 28-30 (2009).
  27. F. Chen, "Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: Fabrication methods and research progress," Crit. Rev. Solid State Mater. Sci. 33, 165-182 (2008).
  28. F. Chen, Y. Tan, L. Wang, X. L. Wang, K. M. Wang, Q. M. Lu, "Diverse mechanism of refractive index modification in neodymium-doped KGd(WO$_{4}$)$_{2}$ crystal induced by MeV He$^{+}$ or C$^{3 +}$ ion implantation for waveguide construction," J. Appl. Phys. 103, 083123-1-083123-6 (2008).
  29. R. Regener, W. Sohler, "Loss in low-finesse Ti:LiNbO$_{3}$ optical waveguide resonators," Appl. Phys. B 36, 143-147 (1985).
  30. A. Ródenas, G. A. Torchia, G. Lifante, E. Cantelar, J. Lamela, F. Jaque, L. Roso, D. Jaque, "Refractive index change mechanisms in femtosecond laser written ceramic Nd:YAG waveguides: Micro-spectroscopy experiments and beam propagation calculations," Appl. Phys. B 95, 85-96 (2009).
  31. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, L. Zhang, "Ion-implanted Nd:MgO:LiNbO$_{3}$ planar waveguide laser," Opt. Lett. 16, 481-483 (1991).
  32. F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, "Radiation trapping and self-quenching analysis in Yb$^{3 +}$, Er$^{3 +}$, and Ho$^{3 +}$ doped Y$_{2}$O$_{3}$," Opt. Mater. 24, 103-109 (2003).
  33. A. Benayas, W. F. Silva, A. Ródenas, C. Jacinto, J. Vázquez de Aldana, F. Chen, Y. Tan, R. R. Thomsom, N. D. Psaila, D. T. Reid, G. A. Torchia, A. K. Kar, D. Jaque, "Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: A study of thermal and non-thermal regimes," Appl. Phys. A. DOI 10.1007/s00339-010-6135-9.
  34. B. Henderson, G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Oxford Univ. Press, 1989).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited