OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 10 — May. 15, 2011
  • pp: 1473–1481

Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides

Jacek Gosciniak, Tobias Holmgaard, and Sergey I. Bozhevolnyi

Journal of Lightwave Technology, Vol. 29, Issue 10, pp. 1473-1481 (2011)


View Full Text Article

Acrobat PDF (1817 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A structure for guiding surface plasmon polaritons (SPPs) over millimeter distances with tight mode confinement is presented and analyzed in detail using the finite element method. The proposed long-range plasmonic waveguide consists of a dielectric ridge deposited on a narrow metal stripe supported by a dielectric buffer layer covering a low-index substrate. It is shown that such an asymmetric waveguide structure can be designed to support a long-range symmetric SPP mode, featuring a propagation length of ${\approx} 3.1$ mm and lateral mode width of ${\approx} 1.6\ \mu$m at telecom wavelengths of ${\sim} 1.55\ \mu$m. Our analysis covers a broad spectrum of parameters: ridge dimensions, buffer layer parameters (refractive index and thickness), as well as metal stripe width, considering in detail the underlying mechanisms of SPP waveguiding in this configuration. The suggested configuration offers easy connection to electrodes enabling, e.g., thermo-optic or electro-optic control, and is technologically simple, making fabrication possible using only a few lithography steps. Additionally, a new figure of merit is introduced, which is related to a number of plasmonic components allowed for a given mode confinement and propagation loss, aiming thereby at the evaluation of the application potential of plasmonic waveguides.

© 2011 IEEE

Citation
Jacek Gosciniak, Tobias Holmgaard, and Sergey I. Bozhevolnyi, "Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides," J. Lightwave Technol. 29, 1473-1481 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-10-1473


Sort:  Year  |  Journal  |  Reset

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Grating. (Springer, 1988).
  2. T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61, 44-50 (2008).
  3. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (World Scientific Publishing, 2008).
  4. E. Verhagen, M. Spasenović, A. Polman, L. K. Kuipers, "Nanowire plasmon excitation by adiabatic mode transformation," Phys. Rev. Lett. 102, 203904 (2009).
  5. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, L. Dalton, "Integration of photonic and silver nanowire plasmonic waveguides," Nat. Nanotechnol. 3, 660-665 (2008).
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006).
  7. C. Reinhardt, S. Passinger, B. N. Chichkov, C. Marquart, I. P. Radko, S. I. Bozhevolnyi, "Laser-fabricated dielectric optical components for surface plasmon polaritons," Opt. Lett. 31, 1307-1309 (2006).
  8. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006).
  9. T. Holmgaard, S. I. Bozhevolnyi, "Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides," Phys. Rev. B 75, 245405 (2007).
  10. A. V. Krasavin, A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phys. Lett. 90, 211101 (2007).
  11. T. Holmgaard, S. I. Bozhevolnyi, L. Markey, A. Dereux, "Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008).
  12. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, A. V. Zayats, "Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides," Opt. Exp. 16, 13585-13592 (2008).
  13. J. Gosciniak, V. V. Volkov, S. I. Bozhevolnyi, L. Markey, S. Massenot, A. Dereux, "Fiber-coupled dielectric-loaded plasmonic waveguides," Opt. Exp. 18, 5314-5319 (2010).
  14. J. Grandidier, G. C. des Francs, S. Massenot, A. Bouhelier, L. Markey, J.-C. Weeber, C. Finot, A. Dereux, "Gain-assisted propagation in a plasmonic waveguide at telecom wavelength," Nano Lett. 9, 2935-2939 (2009).
  15. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, A. Dereux, "Thermo-optic control of dielectric-loaded plasmonic waveguide components," Opt. Exp. 18, 1207 (2010).
  16. J. J. Burke, G. I. Stegeman, T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986).
  17. P. Berini, "Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures," Phys. Rev. B 61, 10484-10503 (2000).
  18. R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, "Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width," Opt. Lett. 25, 844-846 (2000).
  19. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightw. Technol. 23, 413-422 (2005).
  20. T. Nikolajsen, K. Leosson, S. I. Bozhevolnyi, "Surface plasmon polariton based modulators and switches operating at telecom wavelengths," App. Phys. Lett. 85, 5833 (2004).
  21. S. I. Bozhevolnyi, T. Nikolajsen, K. Leosson, "Integrated power monitor for long-range surface plasmon polaritons," Opt. Comm. 255, 51-56 (2005).
  22. I. De Leon, P. Berini, "Amplification of long-range surface plasmons by a dipolar gain medium," Nat. Phot. 4, 382-387 (2010).
  23. M. C. Gather, K. Meerholz, N. Danz, K. Leosson, "Net optical gain in a plasmonic waveguide embadded in a fluorescent polymer," Nat. Phot. 4, 457-461 (2010).
  24. T. Holmgaard, J. Gosciniak, S. I. Bozhevolnyi, "Long-range dielectric-loaded surface plasmon-polariton waveguides," Opt. Exp. 18, 23009-23015 (2010).
  25. Q. Min, C. Chen, P. Berini, R. Gordon, "Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications," Opt. Exp. 18, 19009 (2010).
  26. A. Degiron, S.-Y. Cho, C. Harrison, N. M. Jokerst, C. Dellagiacoma, O. J. F. Martin, D. R. Smith, "Experimental comparison between conventional and hybrid long-range surface plasmon waveguide bends," Phys. Rev. A 77, 021804 (2008) (R).
  27. J. Chen, Z. Li, S. Yue, Q. Gong, "Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides," Opt. Exp. 17, 23603 (2009).
  28. J. K. S. Poon, L. Zhu, G. A. De Rose, A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006).
  29. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  30. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, S. I. Bozhevolnyi, "Integrated optical components utilizing long-range surface plasmon polaritons," J. Lightw. Technol. 23, (2005).
  31. G. Gagnon, N. Lahoud, G. A. Mattiussi, P. Berini, "Thermally activated variable attenuation of long-range surface plasmon-polariton waves," J. Lightw. Technol. 23, (2006).
  32. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  33. R. Buckley, P. Berini, "Figures of merit for 2D surface plasmon waveguides and application to metal stripes," Opt. Exp. 15, 12174-12182 (2007).
  34. R. F. Oulton, G. Bartal, D. F. P. Pile, X. Zhang, "Confinement and propagation characteristics of subwavelength plasmonic modes," N. J. Phys. 10, 105018 (2008).
  35. S. Massenot, J.-C. Weeber, A. Bouhelier, G. C. des Francs, J. Grandidier, L. Markey, A. Dereux, "Differential method for modelling dielectric-loaded surface plasmon polariton waveguides," Opt. Exp. 16, 17599-17608 (2008).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited