OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 10 — May. 15, 2011
  • pp: 1482–1488

Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo

Journal of Lightwave Technology, Vol. 29, Issue 10, pp. 1482-1488 (2011)


View Full Text Article

Acrobat PDF (582 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Different multiwavelength Raman fiber lasers based on a hybrid cavity setup are proposed. The lasing schemes are based in highly birefringent photonic crystal fiber loop mirrors combined with random cavities. The Hi-Bi PCF loop mirrors are characterized by an interferometric output; whereas the random mirrors are created by cooperative Rayleigh scattering due to Raman gain. This configuration allows suppression of Rayleigh associated noise growth, while taking advantage of it as an active part of the laser cavity, enhancing the achievable gain. The proposed fiber lasers present stable operation at room temperature although different output maxima and shapes depending on the fiber loop mirror/random mirror combination.

© 2011 IEEE

Citation
A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, "Multiwavelength Raman Fiber Lasers Using Hi-Bi Photonic Crystal Fiber Loop Mirrors Combined With Random Cavities," J. Lightwave Technol. 29, 1482-1488 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-10-1482


Sort:  Year  |  Journal  |  Reset

References

  1. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castanon, S. K. Turitsyn, "Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback," Opt Lett. 35, 1100-1102 (2010).
  2. Y. E. Im, S. Hann, H. Kim, D. H. Kim, C. S. Park, "An all-fibre robust and tunable Raman fibre laser with reconfigurable asymmetric cavities," Meas. Sci. Technol. 20, 034022-034026 (2009).
  3. X. Y. Dong, P. Shum, N. Q. Ngo, C. C. Chan, "Multiwavelength Raman fiber laser with a continuously-tunable spacing," Opt. Exp. 14, 3288-3293 (2006).
  4. D. R. Chen, S. Qin, L. F. Shen, H. Chi, S. L. He, "An all-fiber multi-wavelength Raman laser based on a PCF Sagnac loop filter," Microw Opt. Technol. Lett. 48, 2416-2418 (2006).
  5. C. S. Kim, R. M. Sova, J. U. Kang, "Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter," Opt. Commun. 218, 291-29 (2003).
  6. A. M. R. Pinto, O. Frazao, J. L. Santos, M. Lopez-Amo, "Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering," Appl. Phys. B. 99, 391-395 (2010).
  7. D. B. Mortimore, "Fiber loop reflectors," J. Lightw. Technol. 6, 1217-1224 (1988).
  8. K. S. Lim, C. H. Pua, N. A. Awang, S. W. Harun, H. Ahmad, "Fiber loop mirror filter with two-stage high birefringence fibers," Progr. Electromag. Res. C 9, 101-108 (2009).
  9. D.-M. Liang, Y. Li, J.-H. Pei, Y. Jiang, Z.-H. Kang, J.-Y. Gao, "Multi-wavelength fiber laser based on a highbirefringence fiber loop mirror," Laser Phys. Lett. 4, 57-60 (2007).
  10. D. H. Kim, J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Exp. 12, 4490-4495 (2004).
  11. Z. Y. Liu, Y. G. Liu, J. B. Du, G. Y. Kai, X. Y. Dong, "Tunable multiwavelength erbium-doped fiber laser with a polarization-maintaining photonic crystal fiber Sagnac loop filter," Laser Phys. Lett. 5, 446-448 (2008).
  12. J. Wang, K. Zheng, J. Peng, L. S. Liu, J. Li, S. S. Jian, "Theory and experiment of a fiber loop mirror filter of two-stage polarization-maintaining fibers and polarization controllers for multiwavelength fiber ring laser," Opt. Exp. 17, 10573-10583 (2009).
  13. C. Headley, G. P. Agrawal, Optics and Photonics (Elsevier Academic Press, 2005).
  14. A. K. Zamzuri, M. H. Al-Mansoori, N. M. Samsuri, M. A. Mahdi, "Contribution of Rayleigh scattering on Brillouin comb line generation in Raman fiber laser," Appl. Opt. 49, 3506-3510 (2010).
  15. K. D. Park, B. Min, P. Kim, N. Park, J. H. Lee, J. S. Chang, "Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier," Opt. Lett. 27, 155-157 (2002).
  16. M. T. M. Giraldi, A. M. Rocha, B. Neto, C. Correia, M. E. V. Segatto, M. J. Pontes, A. P. L. Barbero, J. C. W. Costa, M. A. G. Martinez, O. Frazao, J. M. Baptista, H. M. Salgado, M. B. Marques, A. L. J. Teixeira, P. S. Andre, "Rayleigh assisted Brillouin effects in distributed Raman amplifiers under saturated conditions at 40 Gb/S," Microw. Opt. Technol. Lett. 52, 1331-1335 (2010).
  17. B. Min, P. Kim, N. Park, "Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett. 13, 1352-1354 (2001).
  18. S. Shahi, S. W. Harun, S. F. Norizan, M. R. A. Moghaddam, H. Ahmad, "Brillouin-Raman multi-wavelength laser comb generation based on biEdf by using dual-wavelength in dispersion compensating fiber," J. Nonlinear Opt. Phys. 19, 123-130 (2010).
  19. A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. M. Ali, M. H. Al-Mansoori, "Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity," Opt. Exp. 15, 3000-3005 (2007).
  20. A. K. Zamzuri, M. I. M. Ali, A. Ahmad, R. Mohamad, M. A. Mahdi, "Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity," Opt. Lett. 31, 918-920 (2006).
  21. O. Frazao, J. M. Baptista, J. L. Santos, "Recent advances in high-birefringence fiber loop mirror sensors," Sensors 7, 2970-2983 (2007).
  22. C. L. Zhao, X. F. Yang, C. Lu, W. Jin, M. S. Demokan, "Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror," IEEE Photon. Technol. Lett. 16, 2535-2537 (2004).
  23. O. Frazao, J. P. Carvalho, H. M. Salgado, "Low-loss splice in a microstructured fibre using a conventional fusion splicer," Microw. Opt. Technol. Lett. 46, 172-174 (2005).
  24. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, E. V. Podivilov, "Random distributed feedback fibre laser," Nat. Photon. 4, 231-235 (2010).
  25. M. Z. I. J. L. Gimlett, N. K. Cheung, A. Righetti, F. Fontana, G. Grass, "Observation of equivalent Rayleigh scattering mirrors in light wave systems with optical amplifiers," IEEE Photonic. Technol. Lett. 2, 211-213 (1990).
  26. M. Fernandez-Vallejo, S. Díaz, R. A. Perez-Herrera, D. Passaro, S. Selleri, M. A. Quintela, J. M. López, Higuera, M. López-Amo, "Resilient long-distance sensor system using a multiwavelength Raman laser," Meas. Sci. Technol. 21, 094017-094022 (2010).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited