OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 10 — May. 15, 2011
  • pp: 1489–1499

40 Gb/s NRZ Wavelength Conversion Using a Differentially-Biased SOA-MZI: Theory and Experiment

Maria Spyropoulou, Nikos Pleros, Konstantinos Vyrsokinos, Dimitrios Apostolopoulos, Marios Bougioukos, Dimitrios Petrantonakis, Amalia Miliou, and Hercules Avramopoulos

Journal of Lightwave Technology, Vol. 29, Issue 10, pp. 1489-1499 (2011)


View Full Text Article

Acrobat PDF (1067 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We present theoretical and experimental performance analysis of 40 Gb/s Non-Return-to-Zero (NRZ) All-Optical Wavelength Conversion (AOWC) using a differentially-biased SOA-MZI. A frequency domain transfer function model for both the standard single-control SOA-MZI-based AOWC and for the differentially-biased SOA-MZI is analytically derived, exploiting first order perturbation theory techniques and showing that only the differentially-biased scheme can yield an almost flat low-pass filtering response enabling wavelength conversion at 40 Gb/s. The theoretically obtained results are also confirmed through experiments that demonstrate successful 40 Gb/s AOWC functionality for NRZ data signals only when a differentially-biased SOA-MZI configuration is employed, whereas an error-floor is obtained when 40 Gb/s NRZ AOWC with the standard single-control SOA-MZI scheme is attempted. The 1.7 dB negative power penalty obtained by the differentially-biased SOA-MZI architecture confirms its enhanced regenerative properties and its potential for extending 40 Gb/s optical transparent network dimensions by means of cascaded 2R AOWC stages.

© 2011 IEEE

Citation
Maria Spyropoulou, Nikos Pleros, Konstantinos Vyrsokinos, Dimitrios Apostolopoulos, Marios Bougioukos, Dimitrios Petrantonakis, Amalia Miliou, and Hercules Avramopoulos, "40 Gb/s NRZ Wavelength Conversion Using a Differentially-Biased SOA-MZI: Theory and Experiment," J. Lightwave Technol. 29, 1489-1499 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-10-1489


Sort:  Year  |  Journal  |  Reset

References

  1. N. Calabretta, W. Wang, T. Ditewig, O. Raz, F. G. Agis, S. Zhang, H. de Waardt, H. J. S. Dorren, "Scalable optical packet switches for multiple data formats and data rates packets," IEEE Photon. Technol. Lett. 22, 483-485 (2010).
  2. X. Yi, R. Yu, J. Kurumida, S. J. B. Yoo, "A theoretical and experimental study on modulation-format-independent wavelength conversion," J. Lightw. Technol. 28, 587-595 (2010).
  3. D. Apostolopoulos, K. Vyrsokinos, P. Zakynthinos, N. Pleros, H. Avramopoulos, "An SOA-MZI NRZ wavelength conversion scheme with enhanced 2R regeneration characteristics," IEEE Photon. Technol. Lett. 21, 1363-1365 (2009).
  4. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightw. Technol. 14, 955-966 (1996).
  5. P. Runge, C. A. Bunge, K. Petermann, "All-optical wavelength conversion with extinction ratio improvement of 100 Gb/s RZ-signals in ultralong bulk semiconductor optical amplifiers," IEEE J. Quantum Electron. 46, 937-944 (2010).
  6. M. Asghari, I. H. White, R. Penty, "Wavelength conversion using semiconductor optical amplifiers," J. Lightw. Technol. 15, 1181-1190 (1997).
  7. A. E. Kelly, "Ultra high-speed wavelength conversion and regeneration using semiconductor optical amplifiers," Proc. OFC (2001).
  8. S. Yamashita, S. Y. Set, D. Matsumoto, "Polarization-independent self-pumped wavelength converter using the four wave mixing in a semiconductor optical amplifier," Proc. CLEO/Pacific Rim'99 pp. 1163-1164.
  9. G. Contestabile, M. Presi, E. Ciaramella, "Multiple wavelength conversion for WDM multicasting is a SOA," IEEE Photon. Technol. Lett. 16, 1775-1777 (2004).
  10. G. Constestabile, N. Calabretta, M. Presi, E. Ciaramella, "Single and multicast wavelength conversion at 40 Gb/s by means of fast nonlinear polarization switching in a SOA," IEEE Photon. Technol. Lett. 17, 2652-2654 (2005).
  11. J. Zhang, J. Wu, K. Xu, J. Lin, "40 Gbit/s all-optical wavelength conversion with enhanced performance based on nonlinear polarization rotation (NPR) in SOA with AWG filtering," Proc. 18th Annual Meeting IEEE Lasers and Electrooptic Society, LEOS (2005) pp. 63-64.
  12. J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, R. Ryf, C. R. Giles, "All-optical wavelength conversion using a pulse reformatting optical filter," J. Lightw. Technol. 22, 186-192 (2004).
  13. Y. Liu, E. Tangdiongga, Z. Li, H. de Waardt, A. M. J. Koonen, G. D. Khoe, H. J. S. Dorren, "Error-free 320 Fb/s SOA-based wavelength conversion using optical filtering," Proc. OFC (2005).
  14. L. Stampoulidis, D. Petrantonakis, C. Stamatiadis, E. Kahayas, P. Bakopoulos, C. Kouloumentas, P. Zakynthinos, K. Vyrsokinos, R. Dekker, E. J. Klein, "Microring-resonator-assisted, all-optical wavelength conversion using a single SOA and a second-order Si$_{3}$N$_{4}$-SiO$_{2}$ ROADM," J. Lightw. Technol. 28, 476-483 (2010).
  15. J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, "100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration," Electron. Letters 36, 1129-1130 (2000).
  16. G. T. Kanellos, N. Pleros, D. Pentrantonakis, P. Zakynthinos, H. Avramopoulos, G. Maxwell, A. Poustie, "All-optical 3R burst-mode reception at 40 Gb/s using four integrated MZI switches," Opt. Exp. 15, 5043-5049 (2007).
  17. J. Wang, Y. Jiao, R. Bonk, W. Freude, J. Leuthold, "Regenerative properties of bulk and quantum dot SOA based all-optical Mach–Zehnder interferometer DPSK wavelength converters," Proc. Int. Conf. Photonics in Switching, PS'06 pp. 1-3.
  18. S. Nakamura, Y. Ueno, K. Tajima, "Femptosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zenhder-type all-optical switch," Appl. Phys. Lett. 78, 3929-3931 (2001).
  19. W. Hong, M. Li, X. Zhang, J. Sun, D. Huang, "Dynamic analysis of all-optical wavelength conversion of differential phase-shift keyed signals based on semiconductor optical amplifier Mach–Zehnder interferometer," J. Lightw. Technol. 27, 5580-5589 (2009).
  20. B. Dagens, A. Labrousse, S. Fabre, B. Martin, S. Squedin, B. Lavigne, R. Brenot, M. L. Nielsen, M. Renaud, "New modular SOA-based active-passive integrated Mach–Zehnder interferometer and first standard mode 40 Gb/s all-optical wavelength conversion on the C-band," Proc. ECOC (2002).
  21. M. Hattori, K. Nishimura, R. Inohara, M. Usami, "Bidirectional data injection operation of hybrid integrated SOA-MZI all-optical wavelength converter," J. Lightw. Technol. 25, 512-519 (2007).
  22. N. Yan, J. del Val Puente, T. G. Silveira, A. Teixeira, A. P. S. Ferreira, E. Tangdiongga, P. Monteiro, A. M. J. Koonen, "Simulation and experimental characterization of SOA-MZI-based multiwavelength conversion," J. Lightw. Technol. 27, 117-127 (2009).
  23. D. Apostolopoulos, H. Simos, D. Petrantonakis, A. Bogris, M. Spyropoulou, M. Bougioukos, K. Vyrsoknos, N. Pleros, D. Syvridis, H. Avramopoulos, "A new scheme for regenerative 40 Gb/s NRZ wavelength conversion using a hybrid integrated SOA-MZI," Proc. OFC (2010).
  24. D. Apostolopoulos, D. Klonidis, P. Zakynthinos, K. Vyrsokinos, N. Pleros, I. Tomkos, H. Avramopoulos, "Cascadability performance evaluation of a new NRZ SOA-MZI wavelength converter," IEEE Photon. Technol. Lett. 21, 1341-1343 (2009).
  25. D. A. O. Davies, "Small-signal analysis of wavelength conversion in semiconductor laser amplifier via gain saturation," IEEE Photon. Technol. Lett. 7, 617-619 (1995).
  26. M. L. Nielsen, J. Mørk, "Increasing the modulation bandwidth of semiconductor-optical-amplifier-based switches by using optical filtering," J. Opt. Soc. Amer. B 21, 1606-1619 (2004).
  27. M. Spyropoulou, N. Pleros, A. Miliou, "SOA-MZI-based non-linear optical signal processing: A frequency-domain transfer function for wavelength conversion, clock recovery and packet envelope detection," IEEE J. Quantum Electron. 47, 40-49 (2011).
  28. N. Pleros, C. Bintjas, G. T. Kanellos, K. Vlachos, H. Avramopoulos, G. Geukos, "Recipe for intensity modulation reduction in SOA-based interferometric switches," J. Lightw. Technol. 22, 2834-2841 (2004).
  29. G. P. Agrawal, N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electron. 25, 2297-2306 (1989).
  30. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightw. Technol. 14, 942-951 (1996).
  31. K. Obermann, S. Kindt, D. Breuer, K. Petermann, "Performance analysis of wavelength converters based on cross-gain modulation in semiconductor optical amplifiers," J. Lightw. Technol. 16, 78-85 (1998).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited