## OFDM for Flexible High-Speed Optical Networks

Journal of Lightwave Technology, Vol. 29, Issue 10, pp. 1560-1577 (2011)

Acrobat PDF (2353 KB)

### Abstract

Fast advancing silicon technology underpinned by Moore's law is creating a major transformation in optical fiber communications. The recent upsurge of interests in optical orthogonal frequency-division multiplexing (OFDM) as an efficient modulation and multiplexing scheme is merely a manifestation of this unmistakable trend. Since the formulation of the fundamental concept of OFDM by Chang in 1966 and many landmark works by others thereafter, OFDM has been triumphant in almost all the major RF communication standards. Nevertheless, its application to optical communications is rather nascent and its potential success in the optical domain remains an open question. This tutorial provides a review of optical OFDM slanted towards emerging optical fiber networks. The objective of the tutorial is two-fold: (i) to review OFDM fundamentals from its basic mathematical formation to its salient disadvantages and advantages, and (ii) to reveal the unique characteristics of the fiber optical channel and identify the challenges and opportunities in the application of optical OFDM.

© 2011 IEEE

**Citation**

William Shieh, "OFDM for Flexible High-Speed Optical Networks," J. Lightwave Technol. **29**, 1560-1577 (2011)

http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-10-1560

Sort: Year | Journal | Reset

### References

- J. Mitola, "The software radio architecture," IEEE Commun. Mag. 33, 26-38 (1995).
- H. Sun, K. Wu, K. Roberts, "Real-time measurements of a 40 Gb/s coherent system," Opt. Exp. 16, 873-879 (2008).
- S. J. Savory, "Digital coherent optical receivers: Algorithms and subsystems," IEEE J. Sel. Topics Quantum Electron. 16, 1164-1179 (2010).
- I. Djordjevic, M. Arabaci, L. Minkov, "Next generation FEC for high-capacity communication in optical transport networks," J. Lightw. Technol. 27, 3518-3530 (2009).
- R. W. Chang, "Synthesis of band-limited orthogonal signals for multichannel data transmission," Bell Syst. Tech. J. 45, 1775-1796 (1966).
- R. W. Chang, Orthogonal Frequency Multiplex Data Transmission System U.S. Patent 3 488 445 (1970).
- K. Kitayama, "Highly spectrum efficient OFDM/PDM wireless networks by using optical SSB modulation," J. Lightw. Technol. 16, 969-976 (1998).
- Q. Pan, R. J. Green, "Bit-error-rate performance of lightwave hybrid AM/OFDM systems with comparison with AM/QAM systems in the presence of clipping impulse noise," IEEE Photon. Technol. Lett. 8, 278-280 (1996).
- Q. Shi, "Error performance of OFDM-QAM in subcarrier multiplexed fiber-optic transmission," IEEE Photon. Technol. Lett. 9, 845-847 (1997).
- R. You, J. M. Kahn, "Average power reduction techniques for multiple-subcarrier intensity-modulated optical signals," IEEE Trans. Commun. 49, 2164-2171 (2001).
- B. J. Dixon, R. D. Pollard, S. Iezekeil, "Orthogonal frequency-division multiplexing in wireless communication systems with multimode fiber feeds," IEEE Trans. Microw. Theory Techn. 49, 1404-1409 (2001).
- N. E. Jolley, H. Kee, R. Rickard, J. M. Tang, K. Cordina, "Generation and propagation of a 1550 nm 10 Gb/s optical orthogonal frequency division multiplexed signal over 1000 m of multimode fibre using a directly modulated DFB," Proc. OFC (2005).
- J. Armstrong, A. J. Lowery, "Power efficient optical OFDM," Electron. Lett. 26, 370-372.
- J. M. Tang, P. M. Lane, K. A. Shore, "High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs," J. Lightw. Technol. 24, 429-441 (2006).
- A. Lowery, J. Armstrong, "10 Gbit/s multimode fiber link using power-efficient orthogonal-frequency-division multiplexing," Opt. Exp. 13, 10003-10009 (2005).
- W. Shieh, C. Athaudage, "Coherent optical orthogonal frequency division multiplexing," Electron. Lett. 42, 587-589 (2006).
- A. J. Lowery, L. Du, J. Armstrong, "Orthogonal frequency division multiplexing for adaptive dispersion compensation in long haul WDM systems," Proc. Opt. Fiber Commun. Conf. (2006).
- I. B. Djordjevic, B. Vasic, "Orthogonal frequency division multiplexing for high-speed optical transmission," Opt. Exp. 14, 3767-3775 (2006).
- Y. Ma, Q. Yang, Y. Tang, S. Chen, W. Shieh, "1-Tb/s per channel coherent optical OFDM transmission with subwavelength bandwidth access," Proc. OFC (2009).
- R. Dischler, F. Buchali, "Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF," Proc. OFC (2009).
- S. Chandrasekhar, X. Liu, B. Zhu, D. W. Peckham, "Transmission of a 1.2-Tb/s 24-carrier no-guard-interval coherent OFDM superchannel over 7200-km of ultra-large-area fiber," Proc. Eur. Conf. Optical Commun. (2009).
- X. Liu, S. Chandrasekhar, B. Zhu, P. Winzer, A. Gnauck, D. Peckham, "448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-Grid ROADMs," J. Lightw. Technol. 29, 483-490 (2010).
- M. S. Zimmerman, A. L. Kirsch, "AN/GSC-10 (KATHRYN) variable rate data modem for HF radio," AIEE Trans. 79, 248-255 (1960).
- R. R. Mosier, R. G. Clabaugh, "Kineplex, a bandwidth-efficient binary transmission system," AIEE Trans. 76, 723-728 (1958).
- S. B. Weinsten, P. M. Ebert, "Data transmission by frequency-division multiplexing using the discrete fourier transform," IEEE Trans. Commun. COM-19, 628-634 (1971).
- P. Duhamel, H. Hollmann, "Split-radix FFT algorithm," IET Elect. Lett. 20, 14-16 (1984).
- K. Lee, C. T. D. Thai, J. K. Rhee, "All optical discrete Fourier transform processor for 100 Gbps OFDM transmission," Opt. Exp. 16, 4023-4028 (2008).
- D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. B. Ezra, N. Narkiss, W. Freude, J. Leuthold, "Simple all-optical FFT scheme enabling Tbit/s real-time signal processing," Opt. Exp. 18, 9324-9340 (2010).
- R. Peled, A. Ruiz, "Frequency domain data transmission using reduced computational complexity algorithms," Proc. IEEE ICASSP (1980) pp. 964-967.
- S. Hara, R. Prasad, Multicarrier Techniques for 4G Mobile Communications (Artech House, 2003).
- L. Hanzo, M. Munster, B. J. Choi, T. Keller, OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting (Wiley, 2003).
- H. Takahashi, A. A. Amin, S. L. Jansen, I. Morita, H. Tanaka, "8$\,\times\,$66.8-Gbit/s coherent PDM-OFDM transmission over 640 km of SSMF at 5.6-bit/s/Hz spectral efficiency," Proc. Eur. Conf. Opt. Commun. (2008).
- X. Yi, W. Shieh, Y. Ma, "Phase noise effects on high spectral efficiency coherent optical OFDM transmission," J. Lightw. Technol. 26, 1309-1316 (2008).
- W. Shieh, H. Bao, Y. Tang, "Coherent optical OFDM: Theory and design," Opt. Exp. 16, 841-859 (2008).
- A. D. Ellis, F. C. G. Gunning, "Spectral density enhancement using coherent WDM," IEEE Photon. Technol. Lett. 17, 504-506 (2005).
- C. Doan, S. Emami, A. Niknejad, R. Brodersen, "Millimeter-wave CMOS design," IEEE J. Solid-State Circuits 40, 144-155 (2005).
- P. S. Chow, J. M. Cioffi, J. A. C. Bingham, "A practical discrete multitone transceiver loading algorithm for data transmission over spectrally shaped channels," IEEE Trans. Commun. 43, 773-775 (1995).
- S. C. J. Lee, F. Breyer, S. Randel, H. P. A. van den Boom, A. M. J. Koonen, "High-speed transmission over multimode fiber using discrete multitone modulation [invited]," J. Opt. Netw. 7, 183-196 (2008).
- T. Pollet, M. Van Bladel, M. Moeneclaey, "BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise," IEEE Trans. Commun. 43, 191-193 (1995).
- P. H. Moose, "A technique for orthogonal frequency division multiplexing frequency offset correction," IEEE Trans. Commun. 42, 2908-2914 (1994).
- T. M. Schmidl, D. C. Cox, "Robust frequency and timing synchronization for OFDM," IEEE Trans. Commun. 45, 1613-1621 (1997).
- T. Maeda, N. Matsuno, S. Hori, T. Yamase, T. Tokairin, K. Yanagisawa, H. Yano, R. Walkington, K. Numata, N. Yoshida, Y. Takahashi, H. Hida, "A low-power dual-band triple-mode WLAN CMOS transceiver," IEEE J. Solid-State Circuits 41, 2481-2490 (2006).
- R. Wyatt, W. J. Devlin, "10 kHz linewidth 1.5 um InGaAsP external cavity laser with 55 nm tuning range," IET Elect. Lett. 19, 110-112 (1983).
- J. Proakis, Digital Communications .
- K.-P. Ho, Phase-Modulated Optical Communication Systems (Springer, 2005).
- W. Shieh, X. Yi, Y. Ma, Y. Tang, "Theoretical and experimental study on PMD-supported transmission using polarization diversity in coherent optical OFDM systems," Opt. Exp. 15, 9936-9947 (2007).
- W. Shieh, X. Yi, Y. Tang, "Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fiber," Electron. Lett. 43, 183-185 (2007).
- S. L. Jansen, I. Morita, N. Takeda, H. Tanaka, "20-Gb/s OFDM transmission over 4 160-km SSMF enabled by RF-pilot tone phase noise compensation," Proc. Opt. Fiber Commun. Conf. (2007).
- E. Yamada, A. Sano, H. Masuda, T. Kobayashi, E. Yoshida, Y. Miyamoto, Y. Hibino, K. Ishihara, Y. Takatori, K. Okada, K. Hagimoto, T. Yamada, H. Yamazaki, "Novel no-guardinterval PDM CO-OFDM transmission in 4.1 Tb/s (50 88.8-Gb/s) DWDM link over 800 km SMF including 50-GHz spaced ROADM nodes," Proc. Opt. Fiber Commun. Conf. (2008).
- X. Q. Jin, J. M. Tang, P. S. Spencer, K. A. Shore, "Optimization of adaptively modulated optical OFDM modems for multimode fiber-based local area networks [invited]," J. Opt. Netw. 7, 198-214 (2008).
- D. F. Hewitt, "Orthogonal frequency division multiplexing using baseband optical single sideband for simpler adaptive dispersion compensation," Opt. Fiber Commun. Conf. (2007).
- W. R. Peng;, X. Wu, V. R. Arbab, B. Shamee, L. C. Christen, J. Y. Yang;, K. M. Feng, A. E. Willner, S. Chi, "Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-Tone insertion," Proc. Opt. Fiber Commun. Conf. (2008).
- W. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, K. M. Feng, A. E. Willner, S. Chi, "Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques," Proc. Opt. Fiber Commun. Conf. (2008).
- M. Schuster, S. Randel, C. A. Bunge, S. C. J. Lee, F. Breyer, B. Spinnler, K. Petermann, "Spectrally efficient compatible single-sideband modulation for OFDM transmission with direct detection," IEEE Photon. Technol. Lett. 20, 670-672 (2008).
- L. Xu, D. Qian, J. Hu, W. Wei, T. Wang, "OFDMA-based passive optical networks (PON)," Proc. Technol. Digest. IEEE/LEOS Summer Topical Meetings (2008) pp. 159-160.
- D. Qian, J. Hu, P. Ji, T. Wang, M. Cvijetic, "10-Gb/s OFDMA PON for delivery of heterogeneous services," Proc. OFC (2008).
- S. C. J. Lee, F. Breyer, S. Randel, M. Schuster, J. Zeng, F. Huijskens, H. P. A. van den Boom, A. M. J. Koonen, N. Hanik, "24-Gb/s transmission over 730 m of multimode fiber by direct modulation of an 850-nm VCSEL using discrete multitone modulation," Proc. Opt. Fiber Commun. Conf. (2007).
- J. Grubor, O. C. G. Jamett, J. W. Walewski, S. Randel, K.-D. Langer, ITG Fachbericht 198 (VDE-Verlag, 2007) pp. 203-208.
- N. Cvijetic, D. Qian, T. Wang, "10 Gb/s free-space optical transmission using OFDM," Proc. OFC/NFOEC (2008).
- I. B. Djordjevic, B. Vasic, M. A. Neifeld, "LDPC-coded OFDM for optical communication systems with direct detection," IEEE J. Sel. Topics Quantum Electron. 13, 1446-1454 (2007).
- Shieh, Djordjevic, OFDM for Optical Communications (Academic , 2010).
- N. Gisin, B. Huttner, "Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers," Opt. Commun. 142, 119-125 (1997).
- X. Liu, F. Buchali, "Intra-symbol frequency-domain averaging based channel estimation for coherent optical OFDM," Opt. Exp. 16, 21944-21957 (2008).
- W. Shieh, Q. Yang, Y. Ma, "107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing," Opt. Exp. 16, 6378-6386 (2008).
- G. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
- M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, V. Karagodsky, "Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links," Opt. Exp. 16, 15777-15810 (2008).
- Y. Tang, W. Shieh, B. S. Krongold, "DFT-spread OFDM for fiber nonlinearity mitigation," IEEE Photon. Technol. Lett. 22, 1250-1252 (2010).
- S. L. Jansen, I. Morita, T. C. W. Schenk, H. Tanaka, "121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1000 km of SSMF," J. Lightw. Technol. 27, 177-188 (2009).
- Supplement to IEEE Standard for Information Technology Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band IEEE Std 802.11a-1999 (1999).
- G. Goldfarb, G. F. Li, M. G. Taylor, "Orthogonal wavelength-division multiplexing using coherent detection," IEEE Photon. Technol. Lett. 19, 2015-2017 (2007).
- A. J. Lowery, S. Wang, M. Premaratne, "Calculation of power limit due to fiber nonlinearity in optical OFDM systems," Opt. Exp. 15, 13282-13287 (2007).
- M. Mayrock, H. Haunstein, "Monitoring of linear and nonlinear signal distortion in coherent optical OFDM transmission," J. Lightw. Technol. 27, 3560-3566 (2009).
- X. Liu, F. Buchali, R. W. Tkach, "Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission," J. Lightw. Technol. 27, 3632-3640 (2009).
- Y. Tang, W. Shieh, "Coherent optical OFDM transmission up to 1 Tb/s per channel," J. Lightw. Technol. 27, 3511-3517 (2009).
- P. P. Mitra, J. B. Stark, "Nonlinear limits to the information capacity of optical fibre communications," Nauture 411, 1027-1030 (2001).
- J. Tang, "The channel capacity of a multispan DWDM system employing dispersive nonlinear optical fibers and an ideal coherent optical receiver," J. Lightw. Technol. 20, 1095-1101 (2002).
- X. Chen, W. Shieh, "Closed-form expressions for nonlinear transmission performance of densely spaced coherent optical OFDM systems," Opt. Exp. 18, 19039-19054 (2010).
- C. E. Shannon, "A mathematical theory of communication," Bell Syst. Tech. J. 27, (1948).
- A. J. Lowery, "Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM," Opt. Exp. 15, 12965-12970 (2007).
- E. IP, "Nonlinear compensation using backpropagation for polarization-multiplexed transmission," J. Lightw. Technol. 28, 939-951 (2010).
- R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, "Volterra nonlinear compensation of 100 G coherent OFDM with baud-rate ADC, tolerable complexity and low intra-channel FWM/XPM error propagation," Proc. OFC (2010).
- T. Kobayashi, A. Sano, E. Yamada, E. Yoshida, Y. Miyamoto, "Over 100 Gb/s electro-optically multiplexed OFDM for high-capacity optical transport network," J. Lightw. Technol. 27, 3714-3720 (2009).
- A. D. Ellis, I. Tomkos, I. A. K. Mishra, J. Zhao, S. K. Ibrahim, P. Frascella, F. C. G. Gunning, "Adaptive modulation schemes," Proc. Dig. LEOS Summer Topical Meeting (2009).
- P. J. Winzer, R. J. Essiambre, Chapter in Optical Fiber Telecommunications V: B: Systems and Networks (Academic, 2008).
- Q. Yang, W. Shieh, Y. Ma, "Bit and power loading for coherent optical OFDM," IEEE Photon. Technol. Lett. 20, 1305-1307 (2008).
- A. Bocoi, M. Schuster, F. Rambach, M. Kiese, C. Bunge, B. Spinnler, "Reach-dependent capacity in optical networks enabled by OFDM," Proc. OFC (2009).
- M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, S. Matsuoka, "Spectrum-efficient and scalable elastic optical path network: Architecture, benefits, and enabling technologies," IEEE Commun. Mag. (2009) pp. 66-73.
- J. Baliga, K. Hinton, R. S. Tucker, "Energy consumption of the internet," Proc. 32nd Australian Conf. Opt. Fibre Technol. COIN-ACOFT (2007) pp. 1-3.
- M. Nakazawa, "Tb/s OTDM technology," European Conference on Optical Communications (2001).
- H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, C. Schubert, "Single channel 1.28 Tbit/s and 2.56 Tbit/s DQPSK transmission," Electron. Lett. 42, 178-179 (2006).
- B. Spinnler, "Equalizer design and complexity for digital coherent receivers," IEEE J. Sel. Opt. Quantum Electron. 16, 1180-1192 (2010).
- Q. Yang, S. Chen, Y. Ma, W. Shieh, "Real-time reception of multi-gigabit coherent optical OFDM signals," Opt. Exp. 17, 7985-7992 (2009).
- S. Chen, Q. Yang, Y. Ma, W. Shieh, "Real-time multi-gigabit receiver for coherent optical MIMO-OFDM signals," J. Lightw. Technol. 27, 3699-3704 (2009).
- N. Kaneda, Q. Yang;, X. Liu, S. Chandrasekhar, W. Shieh, Y. K. Chen, "Real-time 2.5 GS/s coherent optical receiver for 53.3-Gb/s sub-banded OFDM," J. Lightw. Technol. 28, 494-501 (2010).
- Y. Benlachtar, G. Gavioli, V. Mikhailov, R. I. Killey, "Experimental investigation of SPM in long-haul direct-detection OFDM systems," Opt. Exp. 16, 15477-15482 (2008).
- F. Buchali, R. Dischler, A. Klekamp, M. Bernhard, D. Efinger, "Realisation of a real-time 12.1 Gb/s optical OFDM transmitter and its application in a 109 Gb/s transmission system with coherent reception," Proc. ECOC (2009).
- X. Q. Jin, R. P. Giddings, E. Hugues-Salas, J. M. Tang, "Real-time demonstration of 128-QAM-encoded optical OFDM transmission with a 5.25 bit/s/Hz spectral efficiency in simple IMDD systems utilizing directly modulated DFB lasers," Opt. Exp. 17, 20484-20493 (2009).
- R. P. Giddings, X. Q. Jin, E. Hugues-Salas, E. Giacoumidis, J. L. Wei, J. M. Tang, "Experimental demonstration of a record high 11.25 Gb/s real-time optical OFDM transceiver supporting 25 km SMF end-to-end transmission in simple IMDD systems," Opt. Exp. 18, 5541-5555 (2010).
- D. Qian, T. Kwok, N. Cvijetic, J. Hu, T. Wang, "41.25 Gb/s real-time OFDM receiver for variable rate WDM-OFDMA-PON transmission," Proc. OFC (2010).

## Cited By |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.