OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 13 — Jul. 1, 2011
  • pp: 1975–1979

Study on Omnidirectional Reflection Bands of Two-Dimensional Photonic Crystals and Optical Waveguides Based on This Effect

Bing Chen, Shuping Li, Tiantong Tang, Chunliang Liu, Hao Chen, Yongdong Li, Lin Huang, and Guizhong Liu

Journal of Lightwave Technology, Vol. 29, Issue 13, pp. 1975-1979 (2011)


View Full Text Article

Acrobat PDF (2222 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

The omnidirectional reflection bands of several typical 2-D photonic crystals are presented. Numerical results show that there are omnidirectional reflection bands in photonic crystals without bandgaps. Furthermore, photonic crystal waveguides based on omnidirectional reflection bands can be constructed by using photonic crystals without bandgaps. Like conventional photonic crystal waveguides based on bandgaps, the novel waveguides can also achieve high-efficient transmission through waveguide bends with near-zero radii of curvature. This waveguide is expected to be applied to highly dense photonic integrated circuits after further research. The aforementioned results are helpful to widen the research field of photonic crystal waveguides.

© 2011 IEEE

Citation
Bing Chen, Shuping Li, Tiantong Tang, Chunliang Liu, Hao Chen, Yongdong Li, Lin Huang, and Guizhong Liu, "Study on Omnidirectional Reflection Bands of Two-Dimensional Photonic Crystals and Optical Waveguides Based on This Effect," J. Lightwave Technol. 29, 1975-1979 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-13-1975


Sort:  Year  |  Journal  |  Reset

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987).
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
  3. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996).
  4. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals-Molding the Flow of Light (Princeton Univ. Press, 2008).
  5. J. M. Gérard, A. Izrael, J. Y. Marzin, R. Padjen, F. R. Ladan, "Photonic bandgap of two-dimensional dielectric crystals," Solid-State Electron. 37, 1341-1351 (1994).
  6. J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos, "Omnidirectional reflection from a one-dimensional photonic crystal," Opt. Lett. 23, 1573-1575 (1998).
  7. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998).
  8. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightw. Technol. 17, 2039-2042 (1999).
  9. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, Y. Fink, "External reflection from omnidirectional dielectric mirror fibers," Science 296, 510-513 (2002).
  10. B. Chen, T. Tang, Z. Wang, H. Chen, Z. Liu, "Flexible optical waveguides based on the omnidirectional reflection of one-dimensional photonic crystals," Appl. Phys. Lett. 93, 181107-1-181107-3 (2008).
  11. B. Chen, T. Tang, H. Chen, "Study on a compact flexible photonic crystal waveguide and its bends," Opt. Exp. 17, 5033-5038 (2009).
  12. B. Chen, T. Tang, H. Chen, "Flexible photonic crystal waveguide branches with arbitrary branching angles," Opt. Lett. 34, 1952-1954 (2009).
  13. B. Chen, T. Tang, C. Liu, H. Chen, "Study on optical waveguides based on omnidirectional reflection of two-dimensional photonic crystals," J. Opt. Soc. Amer. B 27, 972-974 (2010).
  14. S. G. Johnson, J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Exp. 8, 173-190 (2001).
  15. S. G. Johnson, J. D. Joannopoulos, The MIT Photonic-Bands Package [Online]. Available: http://ab-initio.mit.edu/mpb.
  16. H. Benisty, "Modal analysis of optical guides with two-dimensional photonic bandgap boundaries," J. Appl. Phys. 79, 7483-7492 (1996).
  17. T. Søndergaard, A. Lavrinenko, "Large-bandwidth planar photonic crystal waveguides," Opt. Commun. 203, 263-270 (2002).
  18. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method (Artech House, 2000).
  19. H. Benisty, S. Olivier, C. Weisbuch, M. Agio, M. Kafesaki, C. M. Soukoulis, M. Qiu, M. Swillo, A. Karlsson, B. Jaskorzynska, J. Moosburger, M. Kamp, A. Forchel, R. Ferrini, R. Houdré, U. Oesterle, "Models and measurements for the transmission of submicron-width waveguide bends defined in two-dimensional photonic crystals," IEEE J. Quantum Electron. 38, 770-785 (2002).
  20. S. Olivier, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. M. Smith, R. Houdré, U. Oesterle, "Resonant and nonresonant transmission through waveguide bends in a planar photonic crystal," Appl. Phys. Lett. 79, 2514-2516 (2001).
  21. S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, "Improved 60$^{\circ}$ bend transmission of submicron-width waveguides defined by two-dimensional photonic crystals," J. Lightw. Technol. 20, 1198-1203 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited