OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 14 — Jul. 15, 2011
  • pp: 2081–2088

Two-Dimensional Optical Code-Division Modulation With Quantum-Noise Aided Encryption for Applications in Key Distribution

Sarper Ozharar, Daniel R. Reilly, Shawn X. Wang, Gregory S. Kanter, and Prem Kumar

Journal of Lightwave Technology, Vol. 29, Issue 14, pp. 2081-2088 (2011)


View Full Text Article

Acrobat PDF (748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

We propose and demonstrate an advanced optical modulation format that makes use of both spectral and temporal phase encodings (2-D) for applications requiring exceptional security. The method combines modulation techniques used in direct-sequence spread-spectrum coding, spectral-phase encoding, and M-ary phase-shift keying with codes generated using cryptographically secure pseudorandom number generators. The wideband transmission signal is very difficult for an eavesdropper to record or analyze. Signal-to-noise ratio limitations imposed by quantum effects enhance the security further. The properties of the transmitted signal make it especially useful for physics-based key expansion systems. We have successfully used this setup to transmit encrypted 155 Mb/s data over 70 km of fiber with a BER value of 4E-5.

© 2011 IEEE

Citation
Sarper Ozharar, Daniel R. Reilly, Shawn X. Wang, Gregory S. Kanter, and Prem Kumar, "Two-Dimensional Optical Code-Division Modulation With Quantum-Noise Aided Encryption for Applications in Key Distribution," J. Lightwave Technol. 29, 2081-2088 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-14-2081


Sort:  Year  |  Journal  |  Reset

References

  1. F. Zhang, P. L. Chu, "Effect of transmission fiber on chaos communication system based on erbium-doped fiber ring laser," J. Lightw. Technol. 21, 3334-3343 (2003).
  2. A. Agarwal, P. Toliver, R. Menendez, T. Banwell, J. Jackel, S. Etemad, "Spectrally efficient six-user coherent OCDMA system using reconfigurable integrated ring resonator circuits," IEEE Photon. Technol. Lett. 18, 1952-1954 (2006).
  3. G. S. Kanter, D. Reilly, N. Smith, "Practical physical-layer encryption: The marriage of optical noise with traditional cryptography," IEEE Commun. Mag. 47, 74-81 (2009).
  4. N. Ferguson, B. Schneier, Practical Cryptography (Wiley, 2003).
  5. V. Scarani, H. Pasquinucci, N. Cerf, M. Dusek, N. Lutkenhaus, M. Peev, "The security of practical quantum key distribution," Rev. Mod. Phys. 81, 1301-1350 (2009).
  6. H. P. Yuen, "Key generation: Foundations and a new quantum approach," IEEE J. Sel. Topics Quantum Electron. 15, 1630-1645 (2009).
  7. U. M. Mauerer, "Perfect crytographic security from partially independent channels," Proc. 23rd ACM Symp. Theory Comput. (1991) pp. 561-572.
  8. J. Scheuer, A. Yariv, "Giant fiber lasers: A new paradigm for secure key distribution," Phys. Rev. Lett. 97, 140502-1-140502-4 (2006).
  9. H. Hodara, E. Miles, J. Menders, W. Wells, "Secure fiberoptic communications," Fiber Integr. Opt. 22, 47-61 (2003).
  10. H. P. Yuen, A. M. Kim, "Classical noise-based cryptography similar to two-state quantum cryptography," Phy. Lett. A 241, 135-138 (1998).
  11. G. Di Crescenzo, R. Menendez, S. Etemad, "OCDM-based photonic encryption with provable security guarantees," presented at the Opt. Fiber Commun. Conf. San DiegoCA (2008) Paper OTU-P3.
  12. S. X. Wang, D. R. Reilly, G. S. Kanter, S. Ozharar, P. Kumar, "Running-code optical CDMA at 2$\,\times\,$10 Gbit/s and 40 Gbit/s," Electron. Lett. 46, 701-703 (2010).
  13. T. O'Farrell, S. I. Lochmann, "Switched correlator receiver architecture for optical CDMA networks with bipolar capacity," Electron. Lett. 31, 905-906 (1995).
  14. V. J. Hernandez, W. Cong, R. P. Scott, C. Yang, N. K. Fontaine, B. H. Kolner, J. P. Heritage, S. J. B. Yoo, "320-Gb/s capacity (32 users$\,\times\,$10 Gb/s) SPECTS O-CDMA local area network testbed," presented at the Opt. Fiber Commun. AnaheimCA (2006) Paper PDP45.
  15. T. H. Shake, "Confidentiality performance of spectral-phase-encoded optical CDMA," J. Lightw. Technol. 23, 1652-1663 (2005).
  16. A. Rundquist, A. Efimov, D. H. Reitze, "Pulse shaping with the Gerchberg–Saxton algorithm," J. Opt. Soc. Amer. B. 19, 2468-2478 (2002).
  17. K. Ohhata, O. Hirota, M. Honda, S. Akutsu, Y. Doi, K. Harasawa, K. Yamashita, "10-Gb/s optical transceiver using the Yuen 2000 encryption protocol," J. Lightw. Technol. 28, 2714-2723 (2010).
  18. T. Tomaru, S. Sasaki, "Fiber transmissions of antisqueezed light for secure communications," Opt. Commun. 282, 1047-1051 (2009).
  19. D. T. Pegg, S. M. Barnett, "Tutorial review: Quantum optical phase," J. Modern Opt. 44, 225-264 (1997).
  20. H. Bulow, F. Buchali, A. Klekamp, "Electronic dispersion compensation," J. Lightw. Technol. 26, 158-167 (2008).
  21. T. Yilmaz, C. M. Depriest, A. Braun, J. H. Abeles, P. J. Delfyett, "Noise in fundamental and harmonic mode-locked semiconductor lasers: Experiments and simulations," J. Quantum Electron. 39, 838-849 (2003).
  22. R. Nair, H. P. Yuen, E. Corndorf, T. Eguchi, P. Kumar, "Quantum noise randomized ciphers," Phys. Rev. A 74, 052309-1-052309-13 (2006).
  23. H. P. Yuen, R. Nair, "On the security of Y-00 under fast correlation and other attacks on the key," Phys. Lett. A 364, 112-116 (2007).
  24. A. M. Weiner, Z. Jiang, D. E. Leaird, "Spectrally phase-coded O-CDMA [invited]," J. Opt. Netw. 6, 728-755 (2007).
  25. M. A. Dugan, J. X. Tull, W. S. Warren, "High-resolution acousto-optic shaping of femtosecond laser pulses," J. Opt. Soc. Amer. B. 14, 2348-2358 (1997).
  26. S. Gee, F. J. Quinlan, S. Ozharar, P. J. Delfyett, "Correlation of supermode noise of harmonically mode-locked lasers," J. Opt. Soc. Amer. B. 24, 1490-1497 (2007).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited