OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 14 — Jul. 15, 2011
  • pp: 2126–2130

Monitoring Thermal Effect in Femtosecond Laser Interaction With Glass by Fiber Bragg Grating

Chao Chen, Yong-Sen Yu, Rui Yang, Lei Wang, Jing-Chun Guo, Qi-Dai Chen, and Hong-Bo Sun

Journal of Lightwave Technology, Vol. 29, Issue 14, pp. 2126-2130 (2011)


View Full Text Article

Acrobat PDF (715 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

Measurement of the local temperature in transparent materials irradiated by femtosecond laser pulses is important for deep insight into light–matter interaction physics and for proper laser micronanomachining, which is, however, technically challenging. We solve the problem in this paper by using a femtosecond laser-written fiber Bragg grating that can stably work up to 1000°C as a high-sensitivity temperature sensor to monitor the thermal effect. The peak temperature of the thermal impulse is estimated as around 4800°C, which decays to around 500°C in the pulse interval for irradiation of 1.1 mJ under repetition rate of 1 kHz under 40 mm lens focusing.

© 2011 IEEE

Citation
Chao Chen, Yong-Sen Yu, Rui Yang, Lei Wang, Jing-Chun Guo, Qi-Dai Chen, and Hong-Bo Sun, "Monitoring Thermal Effect in Femtosecond Laser Interaction With Glass by Fiber Bragg Grating," J. Lightwave Technol. 29, 2126-2130 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-14-2126


Sort:  Year  |  Journal  |  Reset

References

  1. D. Wu, L. G. Niu, Q. D. Chen, R. Wang, H. B. Sun, "High efficiency multilevel phase-type fractal zone plates," Opt. Lett. 33, 2913-2915 (2008).
  2. Q. D. Chen, D. Wu, L. G. Niu, J. Wang, X. F. Lin, H. Xia, H. B. Sun, "Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization," Appl. Phys. Lett. 91, 171105-1-171105-3 (2007).
  3. S. Kawata, H. B. Sun, T. Tanka, K. Takada, "Finer feature for functional microdevices," Nature 412, 697-698 (2001).
  4. J. Wang, H. Xia, B. B. Xu, L. G. Niu, D. Wu, Q. D. Chen, H. B. Sun, "Remote manipulation of micronanomachines containing magnetic nanoparticles," Opt. Lett. 24, 581-583 (2009).
  5. Y. L. Zhang, L. Guo, S. Wei, Y. Y. He, H. Xia, Q. D. Chen, H. B. Sun, F. S. Xiao, "Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction," Nano Today 5, 15-20 (2010).
  6. D. Wu, Q. D. Chen, L. G. Niu, J. N. Wang, J. Wang, R. Wang, H. Xia, H. B. Sun, "Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices," Lab Chip 9, 2391-2394 (2009).
  7. J. Wang, Y. He, H. Xia, L. G. Niu, R. Zhang, Q. D. Chen, Y. L. Zhang, Y. F. Li, S. J. Zeng, J. H. Qin, B. C. Lin, H. B. Sun, "Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization," Lab Chip 10, 1993-1996 (2010).
  8. E. N. Glezer, E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
  9. R. R. Gattass, E. Mazur, "Femtosecond laser micromachining in transparent materials," Nature Photon. 2, 219-225 (2008).
  10. S. M. Eaton, H. B. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, A. Y. Arai, "Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate," Opt. Exp. 13, 4708-4716 (2005).
  11. C. B. Schaffer, J. F. Garcia, E. Mazur, "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2003).
  12. J. Rathje, M. Kristensen, J. E. Pedersen, "Continuous anneal method for characterizing the thermal stability of ultraviolet Bragg gratings," J. Appl. Phys. 88, 1050-1055 (2000).
  13. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. M. Ding, J. Unruh, "Bragg Gratings written in All-SiO$_{2}$ and Ge-doped core fibers with 800-nm femtosecond radiation," J. Lightw. Technol. 22, 94-100 (2004).
  14. J. Thomas, E. Wikszak, T. Clausnitzer, U. Fuchs, U. Zeitner, S. Nolte, A. Tunnermann, "Inscription of fiber Bragg gratings with femtosecond pulses using a phase mask scanning technique," Appl. Phys. A 86, 153-157 (2007).
  15. C. W. Smelser, S. J. Mihailov, D. Grobnic, "Formation of type I-IR and type II-IR gratings with an ultrafast IR laser and a phase mask," Opt. Exp. 13, 5377-5386 (2005).
  16. Y. H. Li, C. R. Liao, D. N. Wang, T. Sun, K. T. V. Grattan, "Study of spectral and annealing properties of fiber Bragg gratings written in H$_{2}$-free and H$_{2}$-loaded fibers by use of femtosecond laser pulses," Opt. Exp. 16, 21239-21247 (2008).
  17. J. G. Fujimoto, J. M. Liu, E. P. Ippen, "Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures," Phys. Rev. Lett. 53, 1837-1840 (1984).
  18. A. M. Streltsov, N. F. Borrelli, "Study of femtosecond-laser-written waveguides in glasses," J. Opt. Soc. Am. B 19, 2496-2504 (2002).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited