OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology


  • Vol. 29, Iss. 14 — Jul. 15, 2011
  • pp: 2180–2190

Lasing Directionality and Polarization Behavior in Continuous-Wave Ring Raman Lasers Based on Micro- and Nano-Scale Silicon Waveguides

Nathalie Vermeulen

Journal of Lightwave Technology, Vol. 29, Issue 14, pp. 2180-2190 (2011)

View Full Text Article

Acrobat PDF (527 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

  • Export Citation/Save Click for help


A generic model is introduced to describe the lasing characteristics of continuous-wave circular and racetrack-shaped ring Raman lasers based on micro- and nano-scale silicon waveguides. This model explicitly takes into account the effective Raman gain values for forward and backward lasing in the ring resonator, the presence of a bus waveguide in which the Stokes laser radiation coupled out from the ring undergoes additional Raman amplification, and the spatial gain variations for different polarization states in the ring structure. I show numerically that ring lasers based on micro-scale waveguides generate unidirectional lasing in either the forward or backward direction because of an asymmetry in nonlinear losses, whereas those based on nanowires yield only backward lasing due to a non-reciprocity in effective gain. Furthermore, the model indicates that backward lasing can yield a significantly higher Stokes output at the bus waveguide facets than lasing in the forward direction. Finally, considering a TE-polarized pump input for a (100) grown silicon ring Raman laser, I demonstrate numerically that the polarization state of the Stokes lasing radiation strongly depends on whether micro-scale or nano-scale waveguides are used.

© 2011 IEEE

Nathalie Vermeulen, "Lasing Directionality and Polarization Behavior in Continuous-Wave Ring Raman Lasers Based on Micro- and Nano-Scale Silicon Waveguides," J. Lightwave Technol. 29, 2180-2190 (2011)

Sort:  Year  |  Journal  |  Reset


  1. Silicon Photonics: The State of the Art (Wiley, 2008).
  2. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali, "Observation of stimulated Raman amplification in silicon waveguides," Opt. Exp. 11, 1732-1739 (2003).
  3. O. Boyraz, B. Jalali, "Demonstration of a silicon Raman laser," Opt. Exp. 12, 5269-5273 (2004).
  4. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-727 (2005).
  5. H. Rong, Y.-H. Kuo, S. Xu, A. Liu, R. Jones, M. Paniccia, "Monolithic integrated Raman silicon laser," Opt. Exp. 14, 6705-6712 (2006).
  6. H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, M. Paniccia, "Low-threshold continuous-wave Raman silicon laser," Nat. Phot. 1, 232-237 (2007).
  7. R. Claps, V. Raghunathan, D. Dimitropoulos, B. Jalali, "Anti-stokes Raman conversion in silicon waveguides," Opt. Exp. 11, 2862-2872 (2003).
  8. R. L. Espinola, J. I. Dadap, R. M. Osgood, S. J. McNab, Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Exp. 13, 4341-4349 (2005).
  9. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L. Gaeta, M. Lipson, "Frequency conversion over two-thirds of an octave in silicon nanowaveguides," Opt. Exp. 18, 1904-1908 (2010).
  10. Y. R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 2003).
  11. J. P. Hohimer, G. A. Vawter, D. C. Craft, "Unidirectional operation in a semiconductor ring diode-laser," Appl. Phys. Lett. 62, 1185-1187 (1993).
  12. M. Sorel, P. J. R. Laybourn, G. Giuliani, S. Donati, "Unidirectional bistability in semiconductor waveguide ring lasers," Appl. Phys. Lett. 80, 3051-3053 (2002).
  13. G. H. Yuan, S. Y. Yu, "Bistability and switching properties of semiconductor ring lasers with external optical injection," IEEE J. Quantum Electron. 44, 41-48 (2008).
  14. J. Javaloyes, S. Balle, "Emission directionality of semiconductor ring lasers: A traveling-wave description," IEEE J. Quantum Electron. 45, 431-438 (2009).
  15. M. Krause, H. Renner, E. Brinkmeyer, "Optical isolation in silicon waveguides based on nonreciprocal Raman amplification," Electron. Lett. 44, 691-693 (2008).
  16. M. Krause, H. Renner, E. Brinkmeyer, "Raman lasers in silicon photonic wires: Unidirectional ring lasing versus Fabry–Perot lasing," Electron. Lett. 45, 38-40 (2009).
  17. M. Krause, H. Renner, E. Brinkmeyer, "Strong enhancement of Raman-induced nonreciprocity in silicon waveguides by alignment with the crystallographic axes," Appl. Phys. Lett. 95, 261111-1-261111-3 (2009).
  18. J. Müller, M. Krause, H. Renner, E. Brinkmeyer, "Measurement of nonreciprocal spontaneous Raman scattering in silicon photonic wires," Opt. Exp. 18, 19532-19540 (2010).
  19. A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, M. Panniccia, "Optical amplification and lasing by stimulated Raman scattering in silicon waveguides," J. Lightw. Technol. 24, 1440-1455 (2006).
  20. N. Vermeulen, J. E. Sipe, H. Thienpont, "Quasi-phase-matched cavity-enhanced Raman converter based on a silicon nanowire ring," IEEE Photon. Technol. Lett. 22, 1796-1798 (2010).
  21. N. Vermeulen, J. E. Sipe, Y. Lefevre, C. Debaes, H. Thienpont, "Wavelength conversion based on Raman- and non-resonant four-wave mixing in silicon nanowire rings without dispersion engineering," IEEE J. Sel. Topics Quantum Electron. .
  22. N. Vermeulen, C. Debaes, A. A. Fotiadi, K. Panajotov, H. Thienpont, "Stokes-anti-stokes iterative resonator method for modeling Raman lasers," IEEE J. Quantum Electron. 42, 1144-1156 (2006).
  23. F. De Leonardis, V. M. N. Passaro, "Modeling and performance of a guided-wave optical angular-velocity sensor based on Raman effect in SOI," J. Lightw. Technol. 25, 2352-2366 (2007).
  24. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, J. E. Sipe, "Enhanced second-harmonic generation in AlGaAs microring resonators," Opt. Lett. 32, 826-828 (2007).
  25. Q. Lin, J. Zhang, P. M. Fauchet, G. P. Agrawal, "Ultrabroadband parametric generation and wavelength conversion in silicon waveguides," Opt. Exp. 14, 4786-4799 (2006).
  26. J. Zhang, Q. Lin, G. Piredda, R. W. Boyd, G. P. Agrawal, P. M. Fauchet, "Anisotropic nonlinear response of silicon in the near-infrared region," Appl. Phys. Lett. 91, 071113-1-071113-3 (2007).
  27. E. Gaxiola, G. Arduini, W. Höfle, F. Roncarolo, E. Vogel, E. Vossenberg, "Performance of the CERN SPS fast extraction for the CNGS facility," Proc. IEEE 2005 Particle Accelerator Conf. pp. 1757-1759.
  28. E. Granot, R. Zaibel, N. Narkiss, S. Ben-Ezra, H. Chayet, N. Shahar, S. Sternklar, S. Tsadka, "Tunable all-optical signal regenerator with a semiconductor optical amplifier and a Sagnac loop: Principles of operation," J. Opt. Soc. Amer. B 22, 2534-2541 (2005).
  29. H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenlowe, P. Jeppesen, "640 Gbit/s and 1.28 Tbit/s polarization insensitive all optical wavelength conversion," Opt. Exp. 18, 9961-9966 (2010).
  30. Z. Luo, X. Yuan, W. Ye, C. Zeng, J. Ji, "Small-signal analysis of bidirectional operating characteristics in a Raman ring laser with external optical injections," Opt. Exp. 18, 19407-19412 (2010).
  31. W. R. Headley, G. T. Reed, S. Howe, A. Liu, M. Paniccia, "Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator," Appl. Phys. Lett. 85, 5523-5525 (2004).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited