OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 15 — Aug. 1, 2011
  • pp: 2267–2275

Complete All-Optical Silica Fiber Isolator via Stimulated Brillouin Scattering

Xinpeng Huang and Shanhui Fan

Journal of Lightwave Technology, Vol. 29, Issue 15, pp. 2267-2275 (2011)


View Full Text Article

Acrobat PDF (484 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

This study demonstrates the theoretical operation of an all-optical silica fiber isolator using stimulated Brillouin scattering. Two pump sources that copropagate through a double-mode fiber generate acoustic waves through electrostriction. These acoustic waves then induce unidirectional interband optical transitions between a separate pair of signal sources. With 1 W of total input pump power, complete optical isolation is achieved with a silica rod waveguide of radius 0.67 μm over a length of approximately 12 m, with pumps operating at a wavelength of 1.55 μm and signals at 1.50 μm.

© 2011 IEEE

Citation
Xinpeng Huang and Shanhui Fan, "Complete All-Optical Silica Fiber Isolator via Stimulated Brillouin Scattering," J. Lightwave Technol. 29, 2267-2275 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-15-2267


Sort:  Year  |  Journal  |  Reset

References

  1. M. Soljačić, J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Mater. 3, 211-219 (2004).
  2. L. J. Aplet, J. W. Carson, "A Faraday effect optical isolator," Appl. Opt. 3, 544-545 (1964).
  3. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
  4. K. Gallo, G. Assanto, K. R. Parameswaran, M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide," Appl. Phys. Lett. 79, 314-316 (2001).
  5. S. K. Ibrahim, S. Bhandare, D. Sandel, H. Zhang, R. Noé, "Nonmagnetic 30 dB integrated optical isolator in III/V material," Electron. Lett. 40, 1293-1294 (2004).
  6. Z. Yu, S. Fan, "Complete optical isolation created by indirect interband photonic transitions," Nat. Photon. 3, 91-94 (2009).
  7. Z. Yu, S. Fan, "Optical isolation based on nonreciprocal phase shift induced by interband photonic transitions," Appl. Phys. Lett. 94, 171116-1-171116-3 (2009).
  8. Z. Yu, S. Fan, "Integrated nonmagnetic optical isolators based on photonic transitions (invited paper)," IEEE J. Sel. Topics Quantum Electron. 16, 459-466 (2010).
  9. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  10. U. S. Inan, A. S. Inan, Engineering Electromagnetics (Addison-Wesley, 1999).
  11. M. S. Kang, A. Nazarkin, A. Brenn, P. S. J. Russell, "Tightly trapped acoustic phonons in photonic crystal fibers as highly nonlinear artificial Raman oscillators," Nat. Phys. 5, 276-280 (2009).
  12. C. R. Pollock, Fundamentals of Optoelectronics (Irwin, 1994).
  13. B. A. Auld, Acoustic Fields and Waves in Solids (Robert E. Krieger Publishing Co., 1990).
  14. E. Peral, A. Yariv, "Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering," IEEE J. Quantum Electron. 35, 1185-1195 (1999).
  15. L. Thévenaz, "Fibre distributed sensing for a more secure society," Proc. Symp. Photon. Technol. 7th Framework Program (2006) pp. 43-51.
  16. W. V. Sorin, B. Y. Kim, H. J. Shaw, "Highly selective evanescent modal filter for two-mode optical fibers," Opt. Lett. 11, 581-583 (1986).
  17. R. W. Boyd, K. Rzążewski, P. Narum, "Noise initiation of stimulated Brillouin scattering," Phys. Rev. A 42, 5514-5521 (1990).
  18. P. Narum, A. L. Gaeta, M. D. Skeldon, R. W. Boyd, "Instabilities of laser beams counterpropagating through a Brillouin-active medium," J. Opt. Soc. Amer. B 5, 623-628 (1988).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited