OSA's Digital Library

Journal of Lightwave Technology

Journal of Lightwave Technology

| A JOINT IEEE/OSA PUBLICATION

  • Vol. 29, Iss. 15 — Aug. 1, 2011
  • pp: 2276–2284

A Broadcast/Multicast-Capable Carrier-Reuse WDM-PON

Feng Zhang, Wen-De Zhong, Zhaowen Xu, Tee Hiang Cheng, Craig Michie, and Ivan Andonovic

Journal of Lightwave Technology, Vol. 29, Issue 15, pp. 2276-2284 (2011)


View Full Text Article

Acrobat PDF (1058 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations
  • Export Citation/Save Click for help

Abstract

A novel broadcast/multicast-capable carrier-reuse WDM-PON architecture is proposed. Utilizing the splitting capability of a power splitter and the cyclic property of an arrayed waveguide grating (AWG) at the remote node, the broadcast channel and a dedicated downlink unicast channel can be overlaid and subsequently transmitted to each optical network unit (ONU) simultaneously. Since each ONU can receive a common broadcast channel with electronically coded information, the multicast function can be implemented in a higher layer, similar to the current multicast-capable E-PON or G-PON using IP multicast addresses through a single wavelength channel. Thus, there is no need for reconfiguration of physical connections for multicast services. The proposed approach is different from the approach of overlaying DPSK multicast data onto NRZ unicast data using the same wavelength. As such, this approach does not require an expensive DPSK receiver at each ONU, and high receiver sensitivity can be achieved since there is no need to restrict the extinction ratio (ER) of the NRZ unicast data to a small value. Simulation studies show that this WDM-PON provides acceptable performance with one 10 Gb/s broadcast channel and thirty-two 10 Gb/s downlink unicast channels, and thirty-two 2.5 Gb/s uplink unicast channels. Another advantage of this WDM-PON is that the broadcast channel only causes a small interference with the downlink/uplink unicast channels, and it is shared by all the ONUs. The effect of the optical carrier to subcarrier ratio on the bit error rate performance can be mitigated by increasing the extinction ratio of the delay interferometer used at the remote node.

© 2011 IEEE

Citation
Feng Zhang, Wen-De Zhong, Zhaowen Xu, Tee Hiang Cheng, Craig Michie, and Ivan Andonovic, "A Broadcast/Multicast-Capable Carrier-Reuse WDM-PON," J. Lightwave Technol. 29, 2276-2284 (2011)
http://www.opticsinfobase.org/jlt/abstract.cfm?URI=jlt-29-15-2276


Sort:  Year  |  Journal  |  Reset

References

  1. G.-K. Chang, A. Chowdhury, Z. Jia, H.-C. Chien, M.-F. Huang, J. Yu, G. Ellinas, "Key technologies of WDM-PON for future converged optical broadband access networks," IEEE/OSA J. Opt. Commun. Netw. 1, C35-C50 (2009).
  2. L. G. Kazovsky, W. T. Shaw, D. Gutierrez, N. Cheng, S. W. Wong, "Next-generation optical access networks," J. Lightw. Technol. 25, 3428-3442 (2007).
  3. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, K. H. Song, "Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network," J. Lightw. Technol. 22, 2582-2591 (2004).
  4. S. Pan, J. Yao, "A UWB over fiber system compatible with WDM-PON architecture," IEEE Photon. Technol. Lett. 22, 1500-1502 (2010).
  5. M. Maier, "WDM passive optical networks and beyond: The road ahead," J. Opt. Commun. Netw. 1, C1-C16 (2009).
  6. J. Choi, M. Yoo, B. Mukherjee, "Efficient video-on-demand streaming for broadband access networks," J. Opt. Commun. Netw. 2, 38-50 (2010).
  7. J. H. Moon, K. M. Choi, C. H. Lee, "Overlay of broadcasting signal in a WDM-PON," Proc. OFC'06 (2006) pp. 1-3.
  8. M. Khanal, C. J. Chae, R. S. Tucker, "Selective broadcasting of digital video signals over a WDM passive optical network," IEEE Photon. Technol. Lett. 17, 1992-1994 (2005).
  9. N. Deng, C. K. Chan, L. K. Chen, C. Lin, "A WDM passive optical network with centralized light sources and multicast overlay," IEEE Photon. Technol. Lett. 20, 114-116 (2008).
  10. Y. Zhang, N. Deng, C. K. Chan, L. K. Chen, "A multicast WDM-PON architecture using DPSK/NRZ orthogonal modulation," IEEE Photon. Technol. Lett. 20, 1479-1481 (2008).
  11. K. E. Han, W. H. Yang, K. M. Yoo, Y. C. Kim, "Design of AWG-based WDM-PON architecture with multicast capability," Proc. INFOCOM'08 (2008) pp. 390-395.
  12. C. Bock, J. Prat, "WDM/TDM PON experiments using the AWG free spectral range periodicity to transmit unicast and multicast data," Opt. Exp. 13, 2887-2891 (2005).
  13. E. S. Son, K. H. Han, J. K. Kim, Y. C. Chung, "Bidirectional WDM passive optical network for simultaneous transmission of data and digital broadcast video service," J. Lightw. Technol. 21, 1723-1727 (2003).
  14. T. Y. Kim, S. K. Han, "Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission," IEEE Photon. Technol. Lett. 18, 2350-2 (2006).
  15. J. M. Kang, S. K. Han, "A novel hybrid WDM/SCM-PON sharing wavelength for up- and down-link using reflective semiconductor optical amplifier," IEEE Photon. Technol. Lett. 18, 502-4 (2006).
  16. Z. Xu, Y. J. Wen, W. D. Zhong, M. Attygalle, X. F. Cheng, Y. Wang, C. Lu, "Carrier-reuse WDM-PON using a shared delay interferometer for separating carriers and subcarriers," IEEE Photon. Technol. Lett. 19, 837-839 (2007).
  17. Z. Xu, Y. J. Wen, W. D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T. H. Cheng, C. Lu, "WDM-PON architectures with a single shared interferometric filter for carrier-reuse upstream transmission," J. Lightw. Technol. 25, 3669-3677 (2007).
  18. I. Papagiannakis, M. Omella, D. Klonidis, A. N. Birbas, J. Kikidis, I. Tomkos, J. Prat, "Investigation of 10-Gb/s RSOA-based upstream transmission in WDM-PONs utilizing optical filtering and electronic equalization," IEEE Photon. Technol. Lett. 20, 2168-2170 (2008).
  19. J. She, P.-H. Ho, "Cooperative coded video multicast for IPTV services under EPON-WiMAX integration," IEEE Commun. Mag. 46, 104-110 (2008).
  20. OptiSystem 7.0 http://www.optiwave.com/site/products/system.html.
  21. C. H. Lee, W. V. Sorin, B. Y. Kim, "Fiber to the home using a PON infrastructure," J. Lightw. Technol. 24, 4568-4583 (2006).
  22. M. Nakamura, H. Ueda, S. Makino, T. A. Y. T. Yokotani, K. A. O. K. Oshima, "Proposal of networking by PON technologies for full and ethernet services in FTTx," J. Lightw. Technol. 22, 2631-2640 (2004).
  23. M. Attygalle, T. Anderson, D. Hewitt, A. Nirmalathas, "WDM passive optical network with subcarrier transmission and baseband detection scheme for laser-free optical network units," IEEE Photon. Technol. Lett. 18, 1279-1281 (2006).
  24. W. D. Zhong, R. S. Tucker, "Wavelength routing-based photonic packet buffers and their applications in photonic packet switching systems," J. Lightw. Technol. 16, 1737-1745 (1998).
  25. H. Bulow, F. Buchali, A. Klekamp, "Electronic dispersion compensation," IEEE/OSA J. Lightw. Technol. 26, 158-167 (2008).
  26. Oclaro 10 Gb/s APD Receiver module AT10XGC http://www.oclaro.com/datasheets/AT10XGC%20Datasheet%20-%20D00010-PB%20[05].pdf.
  27. Oclaro 2.5 Gb/s APD Receiver module AT3SGCC http://www.avanex.com/datasheets/AT3SGCC%20Datasheet%20-%20D00009-PB%20%5B05%5D.pdf.
  28. CIP Technologies RSOA http://www.ciphotonics.com/download/datasheet/soa/SOA-R-C-TO_A.pdf.
  29. G. Agrawal, Lightwave Technology: Telecommunication Systems (Wiley-Interscience, 2005).
  30. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 2002).
  31. R. Stolen, C. Lin, "Self-phase-modulation in silica optical fibers," Phys. Rev. A 17, 1448 (1978).
  32. D. A. Fishman, J. A. Nagel, "Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems," J. Lightw. Technol. 11, 1721-1728 (1993).
  33. Z. Xu, Y. J. Wen, W. D. Zhong, T. H. Cheng, M. Attygalle, X. Cheng, Y. K. Yeo, Y. Wang, C. Lu, "Characteristics of subcarrier modulation and its application in WDM-PONs," J. Lightw. Technol. 27, 2069-76 (2009).

Cited By

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited